-
With the continuous improvement on the size requirements of integrated circuit fabrication, the research on the miniaturization of electronic device is favored by more and more scientists. This paper systematically investigated the edge modifications on the electronic band structure of α-2-graphyne and electronic transport characteristics of its devices by employing the density functional theory combined with non-equilibrium Green's functions. From the research results of the band structures with halogens or oxygenated group doping, when the various elements doping within the antiferromagnetic configuration have been applied in α-2-graphyne, the materials exhibit unique semiconductor properties. In particular, the periodic structure of α-2-graphyne with the O-doping exhibits relatively complex band structures near the Fermi level. We can find that the electronic devices with F, Cl, O, OH doping show obvious negative differential resistance (NDR) and spin filtering effects. Among them, the NDR effect of the device with O doping (M4) shows particularly significant feature, and its peak-to-valley ratio within the antiparallel case is as high as 136. However, the peak-to-valley ratio reaches 128 within the antiferromagnetism configuration. In addition, we further dissect the intrinsic physical mechanism of the NDR effect by calculating the transmission spectra and local density of states within the parallel and antiparallel cases. At the same time, the spin filtering efficiency of the device reaches high as 84% at an applied voltage of -0.4V within the parallel case and 79% at -1.6V within antiparallel case. By analyzing the electron transport paths of the M4, we can clearly understand the intrinsic mechanism of the spin-filtering properties for the devices based on the α-2-graphyne nanotibbons. This research will have obvious application value in the research of hot areas such as novel logic devices, integrated circuits and micro/ nano-electronic machines.
-
Keywords:
- α-2-graphyne /
- first principles /
- edge modification /
- negative differential resistance effect /
- spin filtering effect
-
[1] Ivanovskii A L 2013 Prog. Solid. State. Chem. 41 1-19
[2] Djurišić A B, Li E H 1999 J. Appl. Phys. 85 7404-7410
[3] Wudl F 2002 J. Mater. Chem. 12 1959-1963
[4] Ebbesen T W 1996 Phys. Today. 49 26-32
[5] Geim A K, Novoselov K S 2007 Nat. Mater.6 183-191
[6] Narita N, Nagai S, Suzuki S, Nakao K 1998 Phys. Rev. B 58 11009
[7] Baughman R H, Eckhardt H, Kertesz M 1987 J. Chem. Phys. 87 6687-6699
[8] Popov V N, Lambin P 2013Phys. Rev. B 88 075427
[9] Ni Y, Wang X, Tao W, Zhu S C, Yao K L 2016 Sci. Rep. 6 25914
[10] Zhang X J, Peng D D, Xie X L, Li X B, Dong Y L, Long M Q 2021 Eur. Phys. J. B. 94 86
[11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science. 306 666-669
[12] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid. State. Commun. 146 351-355
[13] Alexander B A, Suchismita G, Wen Z B, Irene C, Desalegne T, Feng M, Liu C N 2008 Nano lett. 8 902-907
[14] Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B 2010 Chem. Commun. 46 3256-3258
[15] Srinivasu K, Ghosh S K 2012 J. Phys. Chem. C. 116 5951-5956
[16] Majidi R 2018 J. Electron. Mater. 47 2890-2896
[17] Jafari S N, Hakimi Y, Rouhi S 2020 Phys. E. 119 114022
[18] Zeng M G, Shen L, Cai Y Q, Sha Z D, Feng Y P 2010 Appl. Phys. Lett. 96 042104
[19] Ozaki T, Nishio K, Weng H, Kino H 2010 Phys. Rev. B 81 075422
[20] Dong X S, Chen T, Liu G G, Xie L Z, Zhou G H, Long M Q 2022 ACS Sens. 7 3450-3460
[21] Li Y, Li X B, Zhang S D, Zhang X J, Long M Q 2022 J. Magn. Magn. Mater. 546 168842
[22] Chen J, Reed M A, Rawlett A M, Tour J M 1999 Science 286 1550-1552
[23] Lang N D, Avouris P 1998 Phys. Rev. Lett. 81 3515
[24] Ding W C, Zhang J, Li X B, Chen T, Zhou G H 2022 Phys. E 142 115316
[25] Huang J, Xu K, Lei S L, Su H B, Yang S F, Li Q X, Yang J L 2012 J. Chem. Phys. 136064707
[26] Evlashin S A, Tarkhov M A, Chernodubov D A,Inyushkin A V, Pilevsky A A, Dyakonov P V, Pavlov A A, Suetin N V, Akhatov I S, Perebeinos V 2021 Phys. Rev. Appl. 15 054057
[27] Peng D D, Zhang X J, Li X B, Wu D, Long M Q 2018 J. Appl. Phys. 124 184303
[28] Hu J, Ruan X, Chen Y P 2009 Nano. lett. 9 2730-2735
[29] Zeng J, Chen K Q 2013J. Mater. Chem. C. 1 4014-4019
[30] Pan J B, Zhang Z H, Ding K H, Deng X Q, Guo C 2011 Appl. Phys. Lett. 98 092102
[31] Li J, Zhang Z H, Qiu M, Yuan C, Deng X Q, Fan Z Q, Tang G P, Liang B 2014 Carbon 80 575-582
[32] Meyer J C, Girit C O, Crommie M F, Zettl A 2008 Nature 454 319-322
[33] Caridad J M, Calogero G, Pedrinazzi P, Santos J E, Impellizzeri A, Gunst T, Booth T J, Sordan R, Bøggild P, Brandbyge M 2018 Nano. Lett. 18 4675-4683
[34] Saffarzadeh A, Farghadan R 2011 Appl. Phys. Lett. 98 023106
[35] Mohammadi A, Zaminpayma E 2018 Org. Electron. 61 334-342
[36] Zhang L W, Yang Y Q, Chen J, Zheng X H, Zhang L, Xiao L T, Jia S T 2020 Phys. Chem. Chem. Phys. 22 18548-18555
[37] Bhattacharya B, Sarkar U 2016 J. Phys. Chem. C. 120 26793-26806
[38] Li X B, Zhou J Y, Yu M, Li Y, Zhou K Z, Wang X J, Zhang X J, Long M Q 2023 J. Magn. Magn. Mater.587 171367
[39] Chen X, Xu W, Song B, He P 2020 J Phys-Condens. Mat. 32 215501
[40] Cao L M, Li X B, Li Y, Zhou G H 2020 J. Mater. Chem. C 8 9313-9321
[41] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Li X B, Cao L M, Long M Q, Liu Z R, Zhou G H 2018 Carbon 131 160-167
[43] Wu D, Cao X H, Jia P Z, Zeng Y J, Feng Y X, Tang L M, Zhou W X, Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811
[44] Ren H, Li Q X, Luo Y, Yang J L 2009 Appl. Phys. Lett. 94 173110
[45] Li X B, Qi F, Zhao R D, Qiu Z J, Li Y, Long M Q, Zhou G H 2022 J. Mater. Chem. C 10 5292
[46] Peng S P, Huang X D, Liu Q, Ren P, Wu D, Fan Z Q 2023 Acta Phys. Sin. 72 058501 (in Chinese) [彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强 2023 物理学报 72 058501]
[47] Ding W C, Zhang J, Li X B, Zhou G H 2024 Appl. Surf. Sci.
[48] Yu G L, Ding W C, Xiao X B, Li X B, Zhou G H 2020 Nanoscale. Res. Lett. 15 185
[49] 664 160043
[50] Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175-182
Metrics
- Abstract views: 111
- PDF Downloads: 2
- Cited By: 0