Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spin transport properties of BixY3–xFe5O12 thin films prepared by spin coating

Tian Ying-Yi Wang Shuan-Hu Luo Dian-Bing Wei Xiang-Yang Jin Ke-Xin

Citation:

Spin transport properties of BixY3–xFe5O12 thin films prepared by spin coating

Tian Ying-Yi, Wang Shuan-Hu, Luo Dian-Bing, Wei Xiang-Yang, Jin Ke-Xin
PDF
HTML
Get Citation
  • Yttrium iron garnet (YIG), as a room temperature ferrimagnetic insulator with low damping and narrow ferromagnetic resonance linewidth, has been the research hotspot in spintronics because of its spin transport properties. Bi is one of the most common doping elements used in YIG, and some researches have proved that it can tune the magnetic properties of YIG. Previous studies of BixY3–xFe5O12 thin films focused on the evolutions of their structures, morphologies, and magnetic characteristics. Yet, the effects of Bi3+ substitution of Y3+ on spin transport in YIG thin films have not been systematically studied. The regulation of YIG spin transport by doping is expected to provide a new idea for the spintronics exploration of Pt/YIG system. In this work, we prepare a series of BixY3–xFe5O12 films with different doping ratios by spin coating. And we investigate the effects of Bi3+ on morphology, structure and spin transport properties of YIG films. The results show that Bi doping does not change the crystal structure of YIG. The absorption of the film increases and the bandgap decreases with the increase of doping ratio. The X-ray photoelectron spectroscopy (XPS) indicates the co-existence of Bi3+ and Bi2+. The regulation of Bi doping on spin transport is reflected in the fact that the magnon diffusion length of BixY3–xFe5O12 films is significantly smaller than that of pure YIG films. Meanwhile, we find that the obvious spin Hall magnetoresistance can still be detected in the Pt/BixY3–xFe5O12 heterostructure, and the amplitude is the largest when x = 0.3.
      Corresponding author: Wang Shuan-Hu, shwang2015@nwpu.edu.cn ; Jin Ke-Xin, jinkx@nwpu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JM-088) and Key Research Project of the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JZ-08).
    [1]

    Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar

    [2]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [3]

    Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar

    [4]

    Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar

    [5]

    宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 物理学报 69 208704Google Scholar

    Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar

    [6]

    杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 物理学报 70 077501Google Scholar

    Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar

    [7]

    Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [9]

    Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar

    [10]

    Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar

    [11]

    Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar

    [12]

    Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar

    [13]

    Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar

    [14]

    Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar

    [17]

    Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar

    [18]

    Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar

    [19]

    Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar

    [20]

    Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar

    [21]

    Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar

    [22]

    Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar

    [23]

    Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar

    [24]

    Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar

    [25]

    Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar

    [26]

    Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar

    [27]

    Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar

    [28]

    Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar

    [29]

    Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar

    [30]

    Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar

    [31]

    Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar

    [32]

    Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar

    [33]

    Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar

    [34]

    Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar

    [35]

    Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar

    [36]

    Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar

    [37]

    Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar

    [38]

    Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar

    [39]

    Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar

  • 图 1  旋涂法示意图.

    Figure 1.  Schematic diagram of spin coating method.

    图 2  x = 0, 0.3, 0.5和1时BixY3–xFe5O12薄膜的(a) AFM图像; (b)薄膜实物图; (c)拉曼光谱; (d)吸收谱(插图为带隙宽度-x关系图); (e) SSE实验装置图; (f)归一化VISHE-H曲线; (g)矫顽场HC-x关系图

    Figure 2.  (a) AFM images; (b) photograph of films; (c) Raman spectra; (d) absorption spectra (the insert of (d) is the dependence of bandgap on x); (e) schematic diagram of the SSE experimental setup; (f) normalized VISHE-H curves and (g) the dependence of coercive field HC on x of BixY3–xFe5O12 films at x = 0, 0.3, 0.5 and 1.

    图 3  (a) BixY3–xFe5O12薄膜XPS全谱; (b) Bi元素的XPS窄谱(Bi 4f)

    Figure 3.  (a) Full XPS spectra of BixY3–xFe5O12 thin films; (b) XPS narrow spectrum of Bi element (Bi 4f).

    图 4  (a)实验装置示意图; (b) BixY3–xFe5O12薄膜(x = 0, 0.3, 0.5和1)的VISHE-激光位置的测试数据(点)和拟合数据(曲线), 其中灰色区域表示激光光斑照射在Pt电极上; (c)x和扩散长度的关系

    Figure 4.  (a) Schematic diagram of experimental device; (b) dependence of VISHE on laser position in BixY3–xFe5O12 films (x = 0, 0.3, 0.5 and 1), where the points are test data and the curves are fitting data. The gray area in (b) indicates that the laser spot irradiates on the Pt electrode; (c) dependence of diffusion length on x.

    图 5  (a)横向SMR测试示意图; (b) x = 0, 0.3, 0.5和1时, Pt/ BixY3–xFe5O12薄膜的RSMR/R0-θ的测试数据(点)和拟合数据(曲线); (c)RSMR/R0-x关系图

    Figure 5.  (a) Schematic diagram of experimental device of transverse SMR; (b) when x = 0, 0.3, 0.5 and 1, the dependence of RSMR/R0-θ test data (points) and fitting data (curves) in Pt/ BixY3–xFe5O12 films; (c) dependence of RSMR/R0 on x.

  • [1]

    Gomez-Perez J M, Velez S, Hueso L E, Casanova F 2020 Phys. Rev. B 101 184420Google Scholar

    [2]

    Cornelissen L J, Peters K J H, Bauer G E W, Duine R A, van Wees B J 2016 Phys. Rev. B 94 014412Google Scholar

    [3]

    Giles B L, Yang Z H, Jamison J S, Myers R C 2015 Phys. Rev. B 92 224415Google Scholar

    [4]

    Shan J, Cornelissen L J, Vlietstra N, Ben Youssef J, Kuschel T, Duine R A, van Wees B J 2016 Phys. Rev. B 94 174437Google Scholar

    [5]

    宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨 2020 物理学报 69 208704Google Scholar

    Song B J, Jin Z M, Guo C Y, Ruan S Y, Li J G, Wan C H, Han X F, Ma G H, Yao J Q 2020 Acta Phys. Sin. 69 208704Google Scholar

    [6]

    杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺 2021 物理学报 70 077501Google Scholar

    Yang M, Bai H, Li G, Zhu Z, Zhu Y, Su J, Cai J 2021 Acta Phys. Sin. 70 077501Google Scholar

    [7]

    Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S, Saitoh E 2010 Appl. Phys. Lett. 97 172505Google Scholar

    [8]

    Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B, Saitoh E 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [9]

    Meyer S, Chen Y T, Wimmer S, Althammer M, Wimmer T, Schlitz R, Geprags S, Huebl H, Kodderitzsch D, Ebert H, Bauer G E W, Gross R, Goennenwein S T B 2017 Nat. Mater. 16 977Google Scholar

    [10]

    Weiler M, Althammer M, Schreier M, Lotze J, Pernpeintner M, Meyer S, Huebl H, Gross R, Kamra A, Xiao J, Chen Y T, Jiao H J, Bauer G E W, Goennenwein S T B 2013 Phys. Rev. Lett. 111 176601Google Scholar

    [11]

    Zhou L F, Song H K, Liu K, Luan Z Z, Wang P, Sun L, Jiang S W, Xiang H J, Chen Y B, Du J, Ding H F, Xia K, Xiao J, Wu D 2018 Sci. Adv. 4 eaao3318Google Scholar

    [12]

    Huang M, Xu Z C 2004 Thin Solid Films 450 324Google Scholar

    [13]

    Xu H T, Yang H, Xu W, Yu L X 2008 Curr. Appl. Phys. 8 1Google Scholar

    [14]

    Aparnadevi N, Kumar K S, Manikandan M, Kumar B S, Punitha J S, Venkateswaran C 2020 J. Mater. Sci-Mater. El. 31 2081Google Scholar

    [15]

    Wittekoek S, Popma T J A, Robertson J M, Bongers P F 1975 Phys. Rev. B 12 2777Google Scholar

    [16]

    Matsumoto K, Yamaguchi K, Fujii T, Ueno A 1991 J. Appl. Phys. 69 5918Google Scholar

    [17]

    Guillot M, Ostorero J, Armstrong G, Zhang F, Xu Y 2005 J. Appl. Phys. 97 10f106Google Scholar

    [18]

    Rehspringer J L, Bursik J, Niznansky D, Klarikova A 2000 J. Magn. Magn. Mater. 211 291Google Scholar

    [19]

    Raja A, Gazzali P M M, Chandrasekaran G 2021 Phys. B-Condens. Mat. 613 412988Google Scholar

    [20]

    Atuchin V V, Aleksandrovsky A S, Chimitova O D, Gavrilova T A, Krylov A S, Molokeev M S, Oreshonkov A S, Bazarov B G, Bazarova J G 2014 J. Phys. Chem. C 118 15404Google Scholar

    [21]

    Pena-Garcia R, Guerra Y, Buitrago D M, Leal L R F, Santos F E P, Padron-Hernandez E 2018 Ceram. Int. 44 11314Google Scholar

    [22]

    Costantini J M, Miro S, Beuneu F, Toulemonde M 2015 J. Phys-Condens. Mat. 27 496001Google Scholar

    [23]

    Fechine P B A, Silva E N, de Menezes A S, Derov J, Stewart J W, Drehman A J, Vasconcelos I F, Ayala A P, Cardoso L P, Sombra A S B 2009 J. Phys. Chem. Solids 70 202Google Scholar

    [24]

    Fernandez-Garcia L, Suarez M, Menendez J L 2010 J. Alloy. Compd. 495 196Google Scholar

    [25]

    Jin L C, Jia K C, He Y J, Wang G, Zhong Z Y, Zhang H W 2019 Appl. Surf. Sci. 483 947Google Scholar

    [26]

    Paiva D V M, Silva M A S, Ribeiro T S, Vasconcelos I F, Sombra A S B, Goes J C, Fechine P B A 2015 J. Alloy. Compd. 644 763Google Scholar

    [27]

    Khanra S, Bhaumik A, Kolekar Y D, Kahol P, Ghosh K 2014 J. Magn. Magn. Mater. 369 14Google Scholar

    [28]

    Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R, Jin K X 2018 Phys. Rev. Mater. 2 051401(RGoogle Scholar

    [29]

    Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T, Saitoh E 2014 J. Phys-Condens. Mat. 26 343202Google Scholar

    [30]

    Wiengarten A, Seufert K, Auwarter W, Ecija D, Diller K, Allegretti F, Bischoff F, Fischer S, Duncan D A, Papageorgiou A C, Klappenberger F, Acres R G, Ngo T H, Barth J V 2014 J. Am. Chem. Soc. 136 9346Google Scholar

    [31]

    Abdullah E A, Abdullah A H, Zainal Z, Hussein M Z, Ban T K 2012 J. Environ. Sci. 24 1876Google Scholar

    [32]

    Siao Y J, Qi X D, Lin C R, Huang J C A 2011 J. Appl. Phys. 109 07a508Google Scholar

    [33]

    Scott G B, Lacklison D E, Page J L 1974 Phys. Rev. B 10 971Google Scholar

    [34]

    Sparks M, Loudon R, Kittel C 1961 Phys. Rev. 122 791Google Scholar

    [35]

    Jin H Y, Boona S R, Yang Z H, Myers R C, Heremans J P 2015 Phys. Rev. B 92 054436Google Scholar

    [36]

    Kikkawa T, Uchida K, Daimon S, Qiu Z Y, Shiomi Y, Saitoh E 2015 Phys. Rev. B 92 064413Google Scholar

    [37]

    Rezende S M, Rodriguez-Suarez R L, Cunha R O, Rodrigues A R, Machado F L A, Guerra G A F, Ortiz J C L, Azevedo A 2014 Phys. Rev. B 89 014416Google Scholar

    [38]

    Wang S H, Li G, Wang J Y, Tian Y Y, Zhang H R, Zou L K, Sun J R, Jin K X 2018 Chinese Phys. B 27 117201Google Scholar

    [39]

    Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E, Bauer G E W 2013 Phys. Rev. B 87 144411Google Scholar

  • [1] Peng Shu-Ping, Deng Shu-Ling, Liu Qian, Dong Cheng-Qi, Fan Zhi-Qiang. Quantum interference and spin transport in M-OPE molecular devices controlled by N or B atom substitution. Acta Physica Sinica, 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] Peng Shu-Ping, Huang Xu-Dong, Liu Qian, Ren Peng, Wu Dan, Fan Zhi-Qiang. First-principles study of single-molecule-structure determination of dithienoborepin isomers. Acta Physica Sinica, 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] Qin Zhi-Jie, Zhang Hui-Qing, Zhang Guang-Ping, Ren Jun-Feng, Wang Chuan-Kui, Hu Gui-Chao, Qiu Shuai. Theoretical study of introducing spin into nonmagnetic graphene-based single-molecule junction by edge modifications. Acta Physica Sinica, 2023, 72(13): 138504. doi: 10.7498/aps.72.20230267
    [5] Li Jia-Jin, Liu Qian, Wu Dan, Deng Xiao-Qing, Zhang Zhen-Hua, Fan Zhi-Qiang. Giant rectification of ferromagnetic zigzag SiC nanoribbons connecting anthradithiophene molecules. Acta Physica Sinica, 2022, 71(7): 078501. doi: 10.7498/aps.71.20212193
    [6] Zheng Jun, Ma Li, Xiang Yang, Li Chun-Lei, Yuan Rui-Yang, Chen Jing. Effects of local exchange field in different directions on spin transport of stanene. Acta Physica Sinica, 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [7] Cui Xing-Qian, Liu Qian, Fan Zhi-Qiang, Zhang Zhen-Hua. Effects of oxygen adsorption on spin transport properties of single anthracene molecular devices. Acta Physica Sinica, 2020, 69(24): 248501. doi: 10.7498/aps.69.20201028
    [8] Cai Wei, Xu You-An, Yang Zhi-Yong. Quantum calculation of the influence of trivalent praseodymium ions doping on the magneto-optical properties of terbium gallium garnet crystal. Acta Physica Sinica, 2019, 68(13): 137801. doi: 10.7498/aps.68.20190576
    [9] Chen Wei, Chen Run-Feng, Li Yong-Tao, Yu Zhi-Zhou, Xu Ning, Bian Bao-An, Li Xing-Ao, Wang Lian-Hui. Spin-dependent transport properties of a Co-Salophene molecule between graphene nanoribbon electrodes. Acta Physica Sinica, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] Deng Xiao-Qing, Sun Lin, Li Chun-Xian. Spin transport properties for iron-doped zigzag-graphene nanoribbons interface. Acta Physica Sinica, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [11] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [12] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [13] Hu Chang-Cheng, Wang Gang, Ye Hui-Qi, Liu Bao-Li. Development of the transient spin grating system and its application in the study of spin transport. Acta Physica Sinica, 2010, 59(1): 597-602. doi: 10.7498/aps.59.597
    [14] Wang Ru-Zhi, Yuan Rui-Yang, Song Xue-Mei, Wei Jin-Sheng, Yan Hui. Magnetic-electric controllable spin transport in semiconductors superlattic. Acta Physica Sinica, 2009, 58(5): 3437-3442. doi: 10.7498/aps.58.3437
    [15] TANG GUI-DE, HAN BAO-SHAN. DETERMINATION OF THE ANISOTROPY CONSTANTS Ku AND K1 OF GARNET BUBBLE FILMS BY MEASURING TORQUE CURVES. Acta Physica Sinica, 1990, 39(3): 479-485. doi: 10.7498/aps.39.479
    [16] LIU YU-LONG, ZHANG PENG-XIANG, MO YU-JUN, TU AN. BR1LLOUIN SCATTERING FROM BISMUTH SUBSTITUTED IRON GARNETS. Acta Physica Sinica, 1987, 36(5): 651-654. doi: 10.7498/aps.36.651
    [17] HE YU-QUAN, GUAN TIE-LIANG. THE VISIBLE AND INFRARED REFRACTIVE INDEX DISPERSION OF YTTRIUM IRON GARNET. Acta Physica Sinica, 1982, 31(1): 138-142. doi: 10.7498/aps.31.138
    [18] LASER CRYSTALS RESEARCH GROUP. STUDIES ON DISLOCATIONS IN NEODYMIUM-DOPED ALUMINIUM-YTTRIUM GARNET (Nd-YAG). Acta Physica Sinica, 1976, 25(4): 284-291. doi: 10.7498/aps.25.284
    [19] . Acta Physica Sinica, 1966, 22(1): 119-124. doi: 10.7498/aps.22.119
    [20] . Acta Physica Sinica, 1966, 22(1): 115-118. doi: 10.7498/aps.22.115
Metrics
  • Abstract views:  4178
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  16 June 2022
  • Accepted Date:  17 October 2022
  • Available Online:  27 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回