-
Nano-magnetic logic device (NMLD) is a novel nanoelectronic device that stores, processes, and transfers information by dipole-coupled magneto-static interactions between nanomagnets. In the NMLD, long axis tilted nanomagnet attracts the attention of researchers due to its flexibility in magnetic logic design. Edge-slanted nanomagnet is wildly used, whose long axis is tilted due to its asymmetric shape. However, there are three defects in edge-slanted nanomagnets. 1) This type of nanomagnet requires a larger size, thus increasing the nano-magnetic logic (NML) space and introducing the C-shape and vortex clock errors that are often found in large-sized nanomagnets. 2) The irregular shape of nanomagnet increases the requirements for fabrication. 3) Complex calculations caused by the irregular shape are inevitable.In this paper, the tilt of the long axis of the nanomagnet is realized by placing the regular-shaped (elliptical cylinder) nanomagnet (50 nm×100 nm×20 nm) obliquely. According to the flipping preference of tilted nanomagnet, the authors design a two-input AND (OR) logic gate clocked by stress. The authors choose PMN-PT (Pb (Mg1/3Nb2/3) O3-PbTiO3) as the piezoelectric layer material to use its high piezoelectric coefficient. For magnetic materials, the authors choose Terfenol-D (Tb0.7Dy0.3Fe2), whose magnetic crystal anisotropy is smaller. The material of the subatrate is not discussed in this paper, which will be further studied in future experimental work. The mathematical model is established, and the dynamic magnetization of the gate is calculated. A stress of 90 MPa is applied to the output nanomagent for 3 ns. The nanomagnet is flipped to “NULL” at 1.8 ns and is then flipped to the final stable state after the stress has been removed for 0.9 ns. The output will become logic “0” (“1”) only if the input is logic “00” (“11”), otherwise the output will be logic “1” (“0”), thus successfully implementing OR (AND) logic. In addition, the gate is simulated by using the micromagnetic method. The results are basically consistent with our model. Unlike the designs based on edge-slanted nanomagnets, the basic logic gate based on tilted nanomagnets has three advantages. 1) This design allows high-aspect-ratio (2:1) nanomagnets to be used in logic functions. Therefore, less vortex and C-shaped error will be generated. 2) The regular shape can reduce the fabrication requirements and computational complexities. 3) Using stress as a clock, the energy consumption is greatly reduced, which can be only one-tenth of the general designs clocked by spin electronics.This model provides a greater energy efficiency and reliable basic logic unit for NML design. In the experimental preparation, there may be a large preparation error tilting the nanomagnet. As a solution, the stress electrodes can be tilted instead. So the stress will also make an angle with respect to the long axis of the nanomagnet.
-
Keywords:
- nanomagnet /
- magnetic logic /
- stress regulation /
- logic gate
[1] Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205
[2] Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55
[3] Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562
[4] Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526
[5] Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277
[6] Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273
[7] Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105
[8] Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59
[9] Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452
[10] Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102
[11] Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001
[12] Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314
[13] Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004
[14] Roy K 2013 Appl. Phys. Lett. 103 173110
[15] Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220
[16] Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1
[17] Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501
[18] Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405
[19] A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307
[20] Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391
[21] Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660
[22] Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1
[23] Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161
[24] Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905
[25] Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18
[26] Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478
[27] Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002
[28] Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412
[29] Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135
[30] Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297
[31] Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201
[32] Brown W F 1963 Phys. Rev. 130 1677
[33] Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76
[34] Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376
-
[1] Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205
[2] Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55
[3] Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562
[4] Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526
[5] Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277
[6] Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273
[7] Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105
[8] Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59
[9] Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452
[10] Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102
[11] Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001
[12] Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314
[13] Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004
[14] Roy K 2013 Appl. Phys. Lett. 103 173110
[15] Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220
[16] Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1
[17] Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501
[18] Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405
[19] A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307
[20] Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391
[21] Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660
[22] Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1
[23] Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161
[24] Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905
[25] Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18
[26] Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478
[27] Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002
[28] Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412
[29] Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135
[30] Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297
[31] Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201
[32] Brown W F 1963 Phys. Rev. 130 1677
[33] Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76
[34] Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376
Catalog
Metrics
- Abstract views: 5396
- PDF Downloads: 38
- Cited By: 0