Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet

Liu Jia-Hao Yang Xiao-Kuo Wei Bo Li Cheng Zhang Ming-Liang Li Chuang Dong Dan-Na

Citation:

Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet

Liu Jia-Hao, Yang Xiao-Kuo, Wei Bo, Li Cheng, Zhang Ming-Liang, Li Chuang, Dong Dan-Na
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nano-magnetic logic device (NMLD) is a novel nanoelectronic device that stores, processes, and transfers information by dipole-coupled magneto-static interactions between nanomagnets. In the NMLD, long axis tilted nanomagnet attracts the attention of researchers due to its flexibility in magnetic logic design. Edge-slanted nanomagnet is wildly used, whose long axis is tilted due to its asymmetric shape. However, there are three defects in edge-slanted nanomagnets. 1) This type of nanomagnet requires a larger size, thus increasing the nano-magnetic logic (NML) space and introducing the C-shape and vortex clock errors that are often found in large-sized nanomagnets. 2) The irregular shape of nanomagnet increases the requirements for fabrication. 3) Complex calculations caused by the irregular shape are inevitable.
    In this paper, the tilt of the long axis of the nanomagnet is realized by placing the regular-shaped (elliptical cylinder) nanomagnet (50 nm×100 nm×20 nm) obliquely. According to the flipping preference of tilted nanomagnet, the authors design a two-input AND (OR) logic gate clocked by stress. The authors choose PMN-PT (Pb (Mg1/3Nb2/3) O3-PbTiO3) as the piezoelectric layer material to use its high piezoelectric coefficient. For magnetic materials, the authors choose Terfenol-D (Tb0.7Dy0.3Fe2), whose magnetic crystal anisotropy is smaller. The material of the subatrate is not discussed in this paper, which will be further studied in future experimental work. The mathematical model is established, and the dynamic magnetization of the gate is calculated. A stress of 90 MPa is applied to the output nanomagent for 3 ns. The nanomagnet is flipped to “NULL” at 1.8 ns and is then flipped to the final stable state after the stress has been removed for 0.9 ns. The output will become logic “0” (“1”) only if the input is logic “00” (“11”), otherwise the output will be logic “1” (“0”), thus successfully implementing OR (AND) logic. In addition, the gate is simulated by using the micromagnetic method. The results are basically consistent with our model. Unlike the designs based on edge-slanted nanomagnets, the basic logic gate based on tilted nanomagnets has three advantages. 1) This design allows high-aspect-ratio (2:1) nanomagnets to be used in logic functions. Therefore, less vortex and C-shaped error will be generated. 2) The regular shape can reduce the fabrication requirements and computational complexities. 3) Using stress as a clock, the energy consumption is greatly reduced, which can be only one-tenth of the general designs clocked by spin electronics.
    This model provides a greater energy efficiency and reliable basic logic unit for NML design. In the experimental preparation, there may be a large preparation error tilting the nanomagnet. As a solution, the stress electrodes can be tilted instead. So the stress will also make an angle with respect to the long axis of the nanomagnet.
    [1]

    Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205

    [2]

    Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55

    [3]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562

    [4]

    Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526

    [5]

    Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277

    [6]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [7]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [8]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59

    [9]

    Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452

    [10]

    Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102

    [11]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001

    [12]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [13]

    Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004

    [14]

    Roy K 2013 Appl. Phys. Lett. 103 173110

    [15]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220

    [16]

    Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1

    [17]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501

    [18]

    Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405

    [19]

    A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307

    [20]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391

    [21]

    Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660

    [22]

    Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1

    [23]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161

    [24]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905

    [25]

    Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18

    [26]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478

    [27]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002

    [28]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412

    [29]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [30]

    Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297

    [31]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [32]

    Brown W F 1963 Phys. Rev. 130 1677

    [33]

    Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76

    [34]

    Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376

  • [1]

    Imre A, Csaba G, Ji L L, Bernstein G H, Porod W 2006 Science 311 205

    [2]

    Orlov A O, Imre A, Csaba G, Ji L L, Porod W, Bernstein G H 2008 J. Nanoelectron. Optoelectron. 3 55

    [3]

    Wang S G, Ward R C C, Du G X, Han X F, Wang C, Kohn A 2008 IEEE Trans. Magn. 44 2562

    [4]

    Liu M, Zou Q, Ma C, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interf. 6 8526

    [5]

    Li D L, Ma Q L, Wang S G, Ward R C, Hesjedal T, Zhang X G, Kohn A, Amsellem E, Yang G, Liu J L, Jiang J, Wei H X, Han X F 2013 Sci. Rep. 4 7277

    [6]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2012 IEEE Trans. Nanotechnol. 11 273

    [7]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105

    [8]

    Bhowmik D, You L, Salahuddin S 2014 Nature Nanotechnol. 9 59

    [9]

    Varga E, Csaba G, Bernstein G H, Porod W 2014 IEEE Trans. Magn. 49 4452

    [10]

    Chavez A C, Sun W Y, Atulasimha J, Wang K L, Carman G P 2017 J. Appl. Phys. 122 224102

    [11]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D: Appl. Phys. 50 285001

    [12]

    Li C, Cai L, Liu B J, Yang X K, Cui H Q, Wang S, Wei B 2018 AIP Adv. 8 055314

    [13]

    Gypens P, Leliaert J, van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004

    [14]

    Roy K 2013 Appl. Phys. Lett. 103 173110

    [15]

    Niemier M T, Varga E, Bernstein G H, Porod W, Alam M T, Dingler A, Orlov A, Hu X S 2012 IEEE Trans. Nanotechnol. 11 220

    [16]

    Melo L, Soares T, Neto O V 2017 IEEE Trans. Magn. 53 1

    [17]

    Yang X K, Zhang B, Liu J H, Zhang M L, Li W W, Cui H Q, Wei B 2018 Chin. Phys. Lett. 35 057501

    [18]

    Haldar A, Adeyeye A O 2016 Appl. Phys. Lett. 108 022405

    [19]

    A I-Rashid M M, Bandyopadhyay S, Atulasimha J 2016 IEEE Trans. Electron. Dev. 63 3307

    [20]

    Yang X K, Cai L, Zhang B, Cui H Q, Zhang M L 2015 J. Magn. Magn. Mater. 394 391

    [21]

    Turvani G, Riente F, Cairo F, Vacca M, Garlando U, Zamboni M, Graziano M 2017 Int. J. Circ. Theor. Appl. 45 660

    [22]

    Melo L, Soares T, Vilela Neto O 2017 IEEE Trans. Magn. 53 1

    [23]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li Chuang, Dong D N 2018 J. Magn. Magn. Mater. 474 161

    [24]

    Cui J Z, Hockel J L, Nordeen P K, Pisani D M, Liang C Y, Carman G P, Lynch C S 2013 Appl. Phys. Lett. 103 232905

    [25]

    Hu J M, Duan C G, Nan C W, Chen L Q 2017 npj Comput. Math. 3 18

    [26]

    Biswas A K, Ahmad H, Atulasimha J, Bandyopadhyay S 2016 Nano Lett. 17 3478

    [27]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002

    [28]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412

    [29]

    Fidler J, Schrefl T 2000 J. Phys. D: Appl. Phys. 33 R135

    [30]

    Chikazumi S, Charap S H E 1964 Physics of Magnetism (New York: Wiley) pp296-297

    [31]

    Fashami M S, Roy K, Atulasimha J, Bandyopadhyay S 2011 Nanotechnology 22 155201

    [32]

    Brown W F 1963 Phys. Rev. 130 1677

    [33]

    Fashami M S, D'Souza N 2017 J. Magn. Magn. Mater 438 76

    [34]

    Donahue M J, Porter D G 1999 OOMMF User's Guide, Version 1.0 Interagency Report NISTIR 6376

  • [1] Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei. Structure design and logical CNOT implementation of multi-logical-qubits surface code. Acta Physica Sinica, 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [2] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] Dou Shu-Qing, Yang Xiao-Kuo, Xia Yong-Shun, Yuan Jia-Hui, Cui Huan-Qing, Wei Bo, Bai Xin, Feng Chao-Wen. A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock. Acta Physica Sinica, 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [4] Sun Hai-Ming. Rashba effect and flat band property in one-dimensional helical Se atomic chain. Acta Physica Sinica, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [5] Yuan Jia-Hui, Yang Xiao-Kuo, Zhang Bin, Chen Ya-Bo, Zhong Jun, Wei Bo, Song Ming-Xu, Cui Huan-Qing. Activation function and computing performance of spin neuron driven by magnetic field and strain. Acta Physica Sinica, 2021, 70(20): 207502. doi: 10.7498/aps.70.20210611
    [6] Zhang Song-Ran, He Dai-Hua, Tu Hua-Yao, Sun yan, Kang Ting-Ting, Dai Ning, Chu Jun-Hao, Yu Guo-Lin. Magnetotransport properties and stress control of HgCdTe thin film. Acta Physica Sinica, 2020, 69(5): 057301. doi: 10.7498/aps.69.20191330
    [7] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [8] Chi Ming-He, Zhao Lei. First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Acta Physica Sinica, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] Wei Bo, Cai Li, Yang Xiao-Kuo, Li Cheng. Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet. Acta Physica Sinica, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [10] Wang Sen, Cai Li, Cui Huan-Qing, Feng Chao-Wen, Wang Jun, Qi Kai. Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet. Acta Physica Sinica, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [11] Li Li-Ming, Ning Feng, Tang Li-Ming. First-principles study of effects of quantum confinement and strain on the electronic properties of GaSb nanowires. Acta Physica Sinica, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [12] Zhang Ming-Liang, Cai Li, Yang Xiao-Kuo, Qin Tao, Liu Xiao-Qiang, Feng Chao-Wen, Wang Sen. On-chip clocking for exchange-interaction-based nanomagnetic logic circuits. Acta Physica Sinica, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [13] Xu Yue, Zhang Ze-Yu, Jin Zuan-Ming, Pan Qun-Feng, Lin Xian, Ma Guo-Hong, Cheng Zhen-Xiang. Transient photostriction and strain modulation in La, Nb-codoped BiFeO3 thin films. Acta Physica Sinica, 2014, 63(11): 117801. doi: 10.7498/aps.63.117801
    [14] Yan Sen-Lin. Chaotic laser parallel synchronization and its application in all-optical logic gates. Acta Physica Sinica, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [15] Yang Xiao-Kuo, Cai Li, Wang Jiu-Hong, Huang Hong-Tu, Zhao Xiao-Hui, Li Zheng-Cao, Liu Bao-Jun. Experimental study of magnetic quantum-dot cellular automata function arrays. Acta Physica Sinica, 2012, 61(4): 047502. doi: 10.7498/aps.61.047502
    [16] Yan Sen-Lin. Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual coupling-feedback. Acta Physica Sinica, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [17] Dong Jian-Ji, Zhang Xin-Liang, Wang Yang, Huang De-Xiu. High speed reconfigurable logic gates based on single semiconductor optical amplifier. Acta Physica Sinica, 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [18] Li Yan-Ming, Chen Li-Xiang, She Wei-Long. Theoretical and experimental investigation on all-optical logic gates based on photoisomerization. Acta Physica Sinica, 2007, 56(10): 5895-5902. doi: 10.7498/aps.56.5895
    [19] Guo Qi, Zhang Xia-Ping, Hu Wei, Shou Qian. Photonic switching and logic gating with strongly nonlocal spatial optical solitons. Acta Physica Sinica, 2006, 55(4): 1832-1839. doi: 10.7498/aps.55.1832
    [20] Feng Xiao-Qiang, Hou Xun, Yang Wen-Zheng, Yang Qing, Chen Feng. Photonic logic gates based on bacteriorhodopsin. Acta Physica Sinica, 2003, 52(11): 2803-2806. doi: 10.7498/aps.52.2803
Metrics
  • Abstract views:  5396
  • PDF Downloads:  38
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2018
  • Accepted Date:  26 November 2018
  • Published Online:  05 January 2019

/

返回文章
返回