Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of magnetic order in graphene nanoflakes as spin logic devices

Chi Ming-He Zhao Lei

Citation:

First-principles study of magnetic order in graphene nanoflakes as spin logic devices

Chi Ming-He, Zhao Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Scale effect and topological frustration can form magnetic order in the finite graphene structures (graphene nanoflakes (GNFs)). In this paper, the GNFs that can generate large net electron spin or electron spin antiferromagnetic coupling between local regions of net electron spins are classified reasonably. Representative special GNF configurations are proposed to be effectively used as fundamental logic gate devices for ultra-fast high density spintronics, and theoretically investigated by the first-principles electron structure calculations based on spin-polarized density functional theory. The first-principles calculations are performed by utilizing all-electron numerical-orbital scheme in the M11-L form of meta-GGA exchange-correlation functional. The energy spectrum of singly occupied states and the isodensity surface of total spin distribution indicate evidently that spin-single-state electrons are localized on two sides of a representative double-triangle GNF and the spin polarizations of two GNF segments are in opposite directions, resulting in antiferromagnetic coupling, which is consistent with the results derived from the graph theory and Lieb theorem. The energy of antiferromagnetic spin-coupled state is 55 meV lower than that of ferromagnetic spin-coupled state, which is obviously higher than the thermodynamic threshold of the minimum energy dissipation at room temperature. The spin coupling energy of the double triangle GNF increases with the scaling of GNF dimension increasing. The magnetic coupling strength of the double triangle GNF with and without mirror symmetry approach to the maximum stable values of 50 meV and 200 meV respectively, which are remarkably higher that of quantum dots and transition metal atom systems. Due to the fact that the spin coupling strength of the GNF logic gate spin device can reach 200 meV, it can operate normally at ambient temperature with an error rate of 0.001 which can be easily improved by an error correction technique. The calculation results demonstrate that the proposed GNF logic gate can finely operate at ambient temperature with significantly low and correctable error rate. Recent experimental studies show that graphene nanodevices on a scale of only a few nanometers can be successfully fabricated by etching technique of electron beam and scanning probe. Furthermore, the properties of GNF spin logic devices are not sensitive to intrinsic defects. The triangular GNF with n carbon rings has only (n+2)2-3 carbon atoms, while it can endure n-1 internal defects, thus persisting in non-bond states and local magnetic moments. It is suggested that the full spin logic gate devices based on GNF can be realized by using the current advanced nano-processing technology.
      Corresponding author: Chi Ming-He, minghe_chi@126.com
    • Funds: Projects supported by the National Natural Science Foundation of China (Grant Nos. 51407051, 51677046).
    [1]

    Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204

    [2]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408

    [3]

    Yazyev O V 2008 Phys. Rev. Lett. 101 037203

    [4]

    Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502

    [5]

    Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [7]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [8]

    Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428

    [9]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702

    [10]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [11]

    Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503

    [12]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [13]

    Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717

    [14]

    Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813

    [15]

    Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410

    [16]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571

    [17]

    Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257

    [18]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 物理学报 65 098501]

    [19]

    Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925

    [20]

    Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 物理学报 67 127201]

    [21]

    Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]

    [22]

    Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 物理学报 64 187301]

    [23]

    Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [24]

    Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [25]

    Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117

    [26]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [27]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [28]

    Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195

    [29]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201

    [30]

    Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802

    [31]

    Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [32]

    Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001

    [33]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [34]

    Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397

    [35]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356

    [36]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

  • [1]

    Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M, Butz T 2007 Phys. Rev. Lett. 98 187204

    [2]

    Yazyev O V, Helm L 2007 Phys. Rev. B 75 125408

    [3]

    Yazyev O V 2008 Phys. Rev. Lett. 101 037203

    [4]

    Duplock E J, Scheffler M, Lindan P J D 2004 Phys. Rev. Lett. 92 225502

    [5]

    Fernández-Rossier J, Palacios J J 2007 Phys. Rev. Lett. 99 177204

    [6]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [7]

    Ezawa M 2007 Phys. Rev. B 76 245415

    [8]

    Palacios J J, Fernandez-Rossier J, Brey L 2008 Phys. Rev. B 77 195428

    [9]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702

    [10]

    Wang W L, Meng S, Kaxiras E 2008 Nano Lett. 8 241

    [11]

    Rajca A, Wongsriratanakul J, Rajca S 2001 Science 294 1503

    [12]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209

    [13]

    Bhowmick S, Shenoy V B 2008 J. Chem. Phys. 128 244717

    [14]

    Chappert C, Fert A, van Dau F N 2007 Nature Mater. 6 813

    [15]

    Hueso L E, Pruneda J M, Ferrari V, Burnell G, Valdés-Herrera J P, Simons B D, Littlewood P B, Artacho E, Fert A, Mathur N D 2007 Nature 445 410

    [16]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571

    [17]

    Atulasimha J, Bandyopadhyay S 2016 Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing (America: Wiley) pp221-257

    [18]

    Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016 Acta Phys. Sin. 65 098501 (in Chinese)[王森, 蔡理, 崔焕卿, 冯朝文, 王峻, 齐凯 2016 物理学报 65 098501]

    [19]

    Zhang Z, Zhang Y, Zheng Z, Wang G, Su L, Zhang Y, Zhao W 2017 AIP Adv. 7 055925

    [20]

    Han X F, Wan C H 2018 Acta Phys. Sin. 67 127201 (in Chinese)[韩秀峰, 万蔡华 2018 物理学报 67 127201]

    [21]

    Xiao C J, Dong J M 2014 J. Nanjing Univ. (Nat. Sci.) 50 14 (in Chinese)[肖灿俊, 董锦明 2014 南京大学学报(自然科学) 50 14]

    [22]

    Sun J T, Meng S 2015 Acta Phys. Sin. 64 187301 (in Chinese)[孙家涛, 孟胜 2015 物理学报 64 187301]

    [23]

    Köhler C, Seifert G, Frauenheim T 2005 Chem. Phys. 309 23

    [24]

    Andzelm J, King-smith R D, Fitzgerald G 2001 Chem. Phys. Lett. 335 321

    [25]

    Peverati R, Truhlar D G 2012 J. Phys. Chem. Lett. 3 117

    [26]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205

    [27]

    Baker J, Kessi A, Delley B 1996 J. Chem. Phys. 105 192

    [28]

    Fajtlowicz S, John P E, Sach H 2005 Croat. Chem. Acta 78 195

    [29]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201

    [30]

    Brey L, Fertig H A, Das Sarma S 2007 Phys. Rev. Lett. 99 116802

    [31]

    Wimmer M, Adagideli İ, Berber S, Tománek D, Richter K 2008 Phys. Rev. Lett. 100 177207

    [32]

    Agarwal H, Pramanik S, Bandyopadhyay S 2008 New J. Phys. 10 015001

    [33]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [34]

    Tapaszto L, Dobrik G, Lambin P, Biró L P 2008 Nature Nanotech. 3 397

    [35]

    Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill1 E W, Novoselov K S, Geim1 A K 2008 Science 320 356

    [36]

    Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266

  • [1] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [2] Li Lin, Sun Yu-Xuan, Sun Wei-Feng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides. Acta Physica Sinica, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [3] Liu Jia-Hao,  Yang Xiao-Kuo,  Wei Bo,  Li Cheng,  Zhang Ming-Liang,  Li Chuang,  Dong Dan-Na. Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet. Acta Physica Sinica, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [4] Wang Yi-Fei, Li Xiao-Wei. First-principle calculation on electronic structures and optical properties of hybrid graphene and BiOI nanosheets. Acta Physica Sinica, 2018, 67(11): 116301. doi: 10.7498/aps.67.20172220
    [5] Zhang Shu-Ting, Sun Zhi, Zhao Lei. First-principles study of graphene nanoflakes with large spin property. Acta Physica Sinica, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [6] Li Cheng, Cai Li, Wang Sen, Liu Bao-Jun, Cui Huan-Qing, Wei Bo. Switching characteristics of all-spin logic devices based on graphene interconnects. Acta Physica Sinica, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [7] Liu Hui-Ying, Zhang Xiu-Qin, Fang Yi-Mei, Zhu Zi-Zhong. Structural and electronic properties of T-graphene and its derivatives. Acta Physica Sinica, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [8] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [9] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [10] Yan Sen-Lin. Chaotic laser parallel synchronization and its application in all-optical logic gates. Acta Physica Sinica, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [11] Deng Xiao-Qing, Yang Chang-Hu, Zhang Hua-Lin. The electronic transport properties affected by B/N doping in graphene-based molecular devices. Acta Physica Sinica, 2013, 62(18): 186102. doi: 10.7498/aps.62.186102
    [12] Gao Tan-Hua, Liu Hui-Ying, Zhang Peng, Wu Shun-Qing, Yang Yong, Zhu Zi-Zhong. Structural and electronic properties of Al-doped spinel LiMn2O4. Acta Physica Sinica, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [13] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. Influence of doped rare earth elements on the dehydrogenation properties of VH2. Acta Physica Sinica, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [14] Wang Ru-Zhi, Xu Li-Chun, Yan Hui, Kohyama Masanori. First-principles predictions for the tensile strength of Al metal with dislocations of twist grain boundaries. Acta Physica Sinica, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [15] Yan Sen-Lin. Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual coupling-feedback. Acta Physica Sinica, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [16] Song Hai-Feng, Liu Hai-Feng. Theoretical study of thermodynamic properties of metal Be. Acta Physica Sinica, 2007, 56(5): 2833-2837. doi: 10.7498/aps.56.2833
    [17] Wang Song-You, Duan Guo-Yu, Qiu Jian-Hong, Jia Yu, Chen Liang-Yao. PtN in zinc-blende structure: An unstable metallic transition-metal nitride compound. Acta Physica Sinica, 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [18] Meng Xing, Xu Xiao-Guang, Liu Wei, Sun Yuan, Chen Gang. First-principles investigation of charge disproportionation in HoNiO_3 perovskite. Acta Physica Sinica, 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [19] Chen Li-Juan, Hou Zhu-Feng, Zhu Zi-Zhong, Yang Yong. First-principles calculation of the vacancy formation energies in LiAl. Acta Physica Sinica, 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
    [20] Liu Hui-Ying, Hou Zhu-Feng, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. First-principles calculation on the formation energies oflithium insertion in In Sb. Acta Physica Sinica, 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
Metrics
  • Abstract views:  6510
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2018
  • Accepted Date:  09 September 2018
  • Published Online:  05 November 2018

/

返回文章
返回