Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides

Li Lin Sun Yu-Xuan Sun Wei-Feng

Citation:

First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides

Li Lin, Sun Yu-Xuan, Sun Wei-Feng
PDF
HTML
Get Citation
  • According to the pseudopotential plane-wave method of first-principles calculation based on the spin density functional theory, the electronic structure, magnetic and optical properties of laminated molybdenum oxides (orthonormal and monoclinic MoO3) are studied theoretically. The interlaminar dissociation energy, band-structure, spin polarization, dielectric function, and the optical absorption/reflectivity in a charged state are systematically calculated to explore the potential technology applications of laminated MoO3 as electrochromic or electromagnetic materials in optoelectronic devices. The semilocal GGA-PW91 and nonlocal HSE06 exchange-correlation functional are employed to obtain the more accurate crystal structure and band gap respectively. The cleavage energy results indicate that the single layers can easily flake off from the bulk material of these molybdenum oxides. The band structure and atomic-projected density of states prove that the conduction band minimum and valence band maximum are mainly derived from the atom-orbitals bonding oriented in layer-plane, representing characteristic two-dimensional electronic structure. The spin polarized calculations imply that the evident magnetic-moment will engender in MoO6 octahedron layers of the perfect MoO3 due to the substantial spin polarization of Mo and vertex O atoms which are ferromagnetic-coupling to produce significant net magnetic moments, essentially accounting for the magnetic source of bulk MoO3. The Mo vacancy reduces the electronic density of states derived from the spin polarized d-orbitals, leading the net magnetic moment to decrease, while the OI vacancy can reduce the density of spin-down states in the MoO3, resulting in the significant improvement of net magnetic moment. The existence of OII vacancy leads to the energetic spin-splitting of O-2p and Mo-4d orbital states, and thus increasing net magnetic moment by raising the electronic density of polarized spin-up states. The electron spin polarization of Mo-4d orbital component dominantly contributes to the bulk magnetism. The laminated MoO3 presents a significant optical response in the visible region with obvious anisotropy of optical absorption spectra, which will represent a considerable blue shift or new low-frequency absorption peaks for visible light when loading charges. The calculation results demonstrate that the laminated molybdenum oxides have evident electrochromic property with controllable magnetic moment, which provides theoretical basis and technical data for developing novel functional materials with high performance to be used in electromagnetic or optoelectronic devices.
      Corresponding author: Sun Wei-Feng, sunweifeng@hrbust.edu.cn
    • Funds: Project supported by China Postdoctoral Science Foundation (Grant No. 2013M531058) and the 2018 Comprehensive Plan of Heilongjiang Electric Power Co., Ltd., China (Grant No. 52243717000V).
    [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [2]

    Lin S Y, Wang C M, Kao K S, Chen Y C, Liu C C 2010 J. Sol-Gel Sci. Techn. 53 51Google Scholar

    [3]

    Rahmani M, Keshmiri S, Yu J, Sadek A, Al-Mashat L, Moafi A, Latham K, Li Y, Wlodarski W, Kalantar-zadeh K 2010 Actuat. B: Chem. 145 13Google Scholar

    [4]

    Chen Y, Lu C, Xu L, Ma Y, Hou W, Zhu J J 2010 Cryst. Eng. Commun. 12 3740Google Scholar

    [5]

    Huang L, Xu H, Zhang R, Cheng X, Xia J, Xu Y, Li H 2013 Appl. Surf. Sci. 283 25Google Scholar

    [6]

    Kumar V, Sumboja A, Wang J, Bhavanasi V, Nguyen V C, Lee P S 2014 Chem. Mater. 26 5533Google Scholar

    [7]

    Sreedhara M, Matte H, Govindaraj A, Rao C 2013 Chem. Asian J. 8 2430Google Scholar

    [8]

    Balendhran S, Deng J, Ou J Z, Walia S, Scott J, Tang J, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2013 Adv. Mater. 25 109Google Scholar

    [9]

    Zhou G, Xu X, Yu J, Feng B, Zhang Y, Hu J, Zhou Y 2014 Cryst. Eng. Commun. 16 9025Google Scholar

    [10]

    Liu D, Lei W W, Hao J, Liu D D, Liu B B, Wang X, Chen X H, Cui Q L, Zou G T, Liu J, Jiang S 2009 J. Appl. Phys. 105 023513Google Scholar

    [11]

    Baker B, Feist T P, Mccarron E M 1995 J. Solid State Chem. 119 199Google Scholar

    [12]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2009 J. Magn. Magn. Mater. 321 3067Google Scholar

    [13]

    Peng H, Li J, Li S S, Xia J B 2009 Phys. Rev. B 79 092411Google Scholar

    [14]

    Han X, Lee J, Yoo H I 2009 Phys. Rev. B 79 100403(R)Google Scholar

    [15]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630Google Scholar

    [16]

    Gacic M, Jakob G, Herbort C, Adrian H, Tietze T, Brück S, Goering E 2007 Phys. Rev. B 75 205206Google Scholar

    [17]

    Hu J, Zhang Z, Zhao M, Qin H, Jiang M 2008 Appl. Phys. Lett. 93 192503Google Scholar

    [18]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)Google Scholar

    [19]

    Zuo X, Yoon S D, Yang A, Duan W H, Vittoria C, Harris V G 2009 J. Appl. Phys. 105 07C508Google Scholar

    [20]

    Rahman G, García-Suárez V M, Hong S C 2008 Phys. Rev. B 78 184404Google Scholar

    [21]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2009 Phys. Rev. B 80 144424Google Scholar

    [22]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201Google Scholar

    [23]

    Thakur P, Cezar J C, Brookes N B, Choudhary R J, Prakash R, Phase D M, Chae K H, Kumar R 2009 Appl. Phys. Lett. 94 062501Google Scholar

    [24]

    Okumu J, Koerfer F, Salinga C, Wutting M 2004 J. Appl. Phys. 95 7632Google Scholar

    [25]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2010 Phys. Rev. B 81 134407Google Scholar

    [26]

    Ding H, Ray K G, Ozolins V, Asta M 2012 Phys. Rev. B 85 012104

    [27]

    Peelaers H, Van de Walle C G 2014 J. Phys.: Condens. Matter 26 305502Google Scholar

    [28]

    Ding H, Lin H, Sadigh B, Zhou F, Ozolinš V, Asta M 2014 J. Phys. Chem. C 118 15565Google Scholar

    [29]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 123301Google Scholar

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [31]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [32]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [33]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [34]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [35]

    Kress G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Milman V, Lee M H, Payne M C 1994 Phys. Rev. B 49 16300Google Scholar

    [37]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [38]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett. 79 1337Google Scholar

    [39]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205Google Scholar

    [40]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [41]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317Google Scholar

    [42]

    Negishi H, Negishi S, Kuroiwa Y, Sato N, Aoyagi S 2004 Phys. Rev. B 69 064111Google Scholar

    [43]

    Kalantar-zadeh K, Tang J, Wang M, Wang K L, Shailos A, Galatsis K, Kojima R, Strong V, Lech A, Wlodarski W, Kaner R B 2010 Nanoscale 2 429Google Scholar

    [44]

    Dandogbessi B S, Akin-Ojo O 2016 J. Appl. Phys. 120 055105Google Scholar

    [45]

    Zhong M Z, Zhou K, Wei Z M, Li Y, Li T, Dong H L, Jiang L, Li J B, Hu W P 2018 2D Mater. 5 035033Google Scholar

  • 图 1  (a) $\alpha $-MoO3和(b) MoO3-Ⅱ晶体结构, 顶点、共角和共棱氧原子分别标识为O, O和O

    Figure 1.  The crystal structures of (a) $\alpha $-MoO3 and (b) MoO3-Ⅱ. The apical, corner-sharing and edge-sharing oxygen atoms are denoted by O, O and O respectively.

    图 2  $\alpha $-MoO3和MoO3-Ⅱ在解离过程中的解离能随层间距离d的变化

    Figure 2.  The cleavage energies of $\alpha $-MoO3 and MoO3-Ⅱ, varying with inter-layer distance d.

    图 3  用PW91泛函(左图)和HSE06泛函(右图)计算的(a) $\alpha $-MoO3和(b) MoO3-Ⅱ能带结构, 费米能级作为能量参考零点(水平虚线)

    Figure 3.  Band structures of (a) $\alpha $-MoO3 and (b) MoO3-Ⅱ calculated by PW91 functional (left panels) and HSE06 functional (right panels), with the Fermi energy level being set as reference energy zero (horizontal dot line).

    图 4  (a) $\alpha $-MoO3和(b) MoO3-Ⅱ的DOS,Mo和O的PDOS

    Figure 4.  The total density of states, Mo and O atomic projected density of states for (a) $\alpha $-MoO3 and (b) MoO3-Ⅱ.

    图 5  (a) $\alpha $-MoO3和(b) MoO3 -Ⅱ PDOS的轨道成分: Mo原子的4d轨道成分(上图)和三种等价氧原子O, O和O的2p轨道成分(下图)

    Figure 5.  Partial orbital components of atomic projected density of states for (a) $\alpha $-MoO3 and (b) MoO3 -Ⅱ: Mo-4d orbital (above panels) and O-2p orbital (below panels) of three equivalent oxygens O, O and O.

    图 6  $\alpha $-MoO3(左图)和MoO3-Ⅱ(右图)的(a)自旋分布的等密度面空间分布, 自旋密度等值面密度为0.05 electrons/Å3; (b) Mo-4d和O-2p的部分DOS(上旋态$\alpha $和下旋态$\beta $), 费米能量为能量参考零点(垂直虚线)

    Figure 6.  (a) The spin distribution representing as spin densityisosurface contoured at 0.05 electrons/Å3 and (b) the spin-resolved partial DOS of Mo-4d and O-2p with Fermi energy being referenced as energy zero indicated by vertical dashed line, for $\alpha $-MoO3 (left panels) and MoO3-Ⅱ (right panels).

    图 7  含有6% Mo空位、O空位、O空位和O空位的 (a) $\alpha $-MoO3和 (b) MoO3 -II缺陷晶体的Mo-4d和O-2p的部分DOS (上旋态$\alpha $和下旋态$\beta $), 费米能量为能量参考零点(垂直虚线)

    Figure 7.  The spin-resolved partial DOS of Mo-4d and O-2p for (a) $\alpha $-MoO3 and (b) MoO3 -Ⅱ crystals with 6% Mo, O, O and O vacancies respectively. The Fermi energy is referenced as energy zero indicated by vertical dashed line.

    图 8  $\alpha $-MoO3(左图)和MoO3-Ⅱ(右图)含有6% O(上图)和O(下图)空位的自旋密度等值面, 等值面的密度为0.05 electrons /Å3

    Figure 8.  The isosurface of spin density of $\alpha $-MoO3 (left images) and MoO3-Ⅱ (right images) with 6% O (above images) and O (below images) vacancies respectively. The isosurfaces are contoured at 0.05 electrons/Å3.

    图 9  (a) $\alpha $-MoO3和(b) MoO3-Ⅱ介电函数谱线, 入射非偏振光分别沿着原子层平面的垂直(上图)和平行(下图)方向入射

    Figure 9.  The calculateddielectric functions of (a) $\alpha $-MoO3 and (b) MoO3-Ⅱ with the light incident along the directions perpendicular (above panels) and parallel (below panels) to atomic-layer plane respectively.

    图 10  (a) $\alpha $-MoO3和(b) MoO3-Ⅱ在不同带电(–2e—+2e/单胞)状态下的光吸收谱, 入射非偏振光分别沿着原子层平面的垂直(左图)和平行(右图)方向入射

    Figure 10.  The calculatedabsorption spectra of (a) $\alpha $-MoO3 and (b) MoO3-Ⅱ with the light incident along the directions perpendicular (left panels) and parallel (right panels) to atomic-layer plane respectively, under different charge loading (–2e—+2e per unit cell).

    表 1  $\alpha $-MoO3和MoO3-Ⅱ的晶格参数

    Table 1.  Crystal parameters of $\alpha $-MoO3 and MoO3-Ⅱ.

    晶体结构$\alpha $-MoO3MoO3-Ⅱ
    对称空间群Pnma ($\alpha $ = $\beta $ = $\gamma $ = 90°)P21/m ($\alpha $ = $\gamma $ = 90°)
    晶格
    参数
    PBEa = 14.668 Å, b = 3.858 Å, c = 3.965 Åa = 3.783 Å, b = 3.739 Å, c = 8.067 Å, $\beta $ = 100.979°
    PBE + DFT-D/TSa = 13.012 Å, b = 3.812 Å, c = 3.876 Åa = 3.882 Å, b = 3.812 Å, c = 7.544 Å, $\beta $ = 104.879°
    PW91a = 13.213 Å, b = 3.856 Å, c = 3.990 Åa = 3.809 Å, b = 3.743 Å, c = 7.863 Å, $\beta $ = 101.098°
    PW91 + DFT-D/OBSa = 13.484 Å, b = 3.866 Å, c = 3.964 Åa = 3.909 Å, b = 3.820 Å, c = 7.293 Å, $\beta $ = 104.263°
    实验[41,42]a = 13.350 Å, b = 3.703 Å, c = 3.918 Åa = 3.954 Å, b = 3.687 Å, c = 7.095 Å, $\beta $ = 103.745°
    DownLoad: CSV

    表 2  $\alpha $-MoO3和MoO3 -Ⅱ光学能带带隙的计算值和文献报道实验数据

    Table 2.  The calculated optical band-gaps of $\alpha $-MoO3 and MoO3 -Ⅱ in comparison with reported experimental data.

    带隙/eV$\alpha $-MoO3MoO3 -Ⅱ
    PW91/LDA + U上旋态1.382.99
    下旋态1.642.01
    HSE06上旋态2.852.92
    下旋态2.142.12
    实验值[29]3.0
    DownLoad: CSV

    表 3  用PW91梯度校正泛函和HSE06杂化泛函计算的两种层堆叠钼氧化物的EA和电IP, 最后一行中列出文献[29]中$\alpha $-MoO3的实验结果

    Table 3.  The calculated electron affinity (EA) and ionization potential (IP) of two laminated molybdenum oxides employing PW91 and HSE06 functionals respectively. The experimental results of $\alpha $-MoO3 from Ref. [29] are also listed for comparison.

    $\alpha $-MoO3MoO3 -Ⅱ
    EA/eVIP/eVEA/eVIP/eV
    计算PW916.5557.946.118.12
    HSE066.6158.766.178.29
    实验6.7009.68
    DownLoad: CSV

    表 4  不同点空位类型MoO3晶体的总自旋值(每个单胞), 点空位浓度为6%

    Table 4.  The total spin values (per unit cell) of MoO3 configurations with different vacancies of 6% concentration.

    总自旋h·bar/2/单胞完整晶体VMoVO-ⅠVO-ⅡVO-Ⅲ
    $\alpha $-MoO38.2067.78558.2358.2448.214
    MoO3 -Ⅱ4.3953.9954.7704.8004.378
    DownLoad: CSV
  • [1]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [2]

    Lin S Y, Wang C M, Kao K S, Chen Y C, Liu C C 2010 J. Sol-Gel Sci. Techn. 53 51Google Scholar

    [3]

    Rahmani M, Keshmiri S, Yu J, Sadek A, Al-Mashat L, Moafi A, Latham K, Li Y, Wlodarski W, Kalantar-zadeh K 2010 Actuat. B: Chem. 145 13Google Scholar

    [4]

    Chen Y, Lu C, Xu L, Ma Y, Hou W, Zhu J J 2010 Cryst. Eng. Commun. 12 3740Google Scholar

    [5]

    Huang L, Xu H, Zhang R, Cheng X, Xia J, Xu Y, Li H 2013 Appl. Surf. Sci. 283 25Google Scholar

    [6]

    Kumar V, Sumboja A, Wang J, Bhavanasi V, Nguyen V C, Lee P S 2014 Chem. Mater. 26 5533Google Scholar

    [7]

    Sreedhara M, Matte H, Govindaraj A, Rao C 2013 Chem. Asian J. 8 2430Google Scholar

    [8]

    Balendhran S, Deng J, Ou J Z, Walia S, Scott J, Tang J, Wang K L, Field M R, Russo S, Zhuiykov S, Strano M S, Medhekar N, Sriram S, Bhaskaran M, Kalantar-zadeh K 2013 Adv. Mater. 25 109Google Scholar

    [9]

    Zhou G, Xu X, Yu J, Feng B, Zhang Y, Hu J, Zhou Y 2014 Cryst. Eng. Commun. 16 9025Google Scholar

    [10]

    Liu D, Lei W W, Hao J, Liu D D, Liu B B, Wang X, Chen X H, Cui Q L, Zou G T, Liu J, Jiang S 2009 J. Appl. Phys. 105 023513Google Scholar

    [11]

    Baker B, Feist T P, Mccarron E M 1995 J. Solid State Chem. 119 199Google Scholar

    [12]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2009 J. Magn. Magn. Mater. 321 3067Google Scholar

    [13]

    Peng H, Li J, Li S S, Xia J B 2009 Phys. Rev. B 79 092411Google Scholar

    [14]

    Han X, Lee J, Yoo H I 2009 Phys. Rev. B 79 100403(R)Google Scholar

    [15]

    Venkatesan M, Fitzgerald C B, Coey J M D 2004 Nature 430 630Google Scholar

    [16]

    Gacic M, Jakob G, Herbort C, Adrian H, Tietze T, Brück S, Goering E 2007 Phys. Rev. B 75 205206Google Scholar

    [17]

    Hu J, Zhang Z, Zhao M, Qin H, Jiang M 2008 Appl. Phys. Lett. 93 192503Google Scholar

    [18]

    Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C N R 2006 Phys. Rev. B 74 161306(R)Google Scholar

    [19]

    Zuo X, Yoon S D, Yang A, Duan W H, Vittoria C, Harris V G 2009 J. Appl. Phys. 105 07C508Google Scholar

    [20]

    Rahman G, García-Suárez V M, Hong S C 2008 Phys. Rev. B 78 184404Google Scholar

    [21]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2009 Phys. Rev. B 80 144424Google Scholar

    [22]

    Peng H, Xiang H J, Wei S H, Li S S, Xia J B, Li J 2009 Phys. Rev. Lett. 102 017201Google Scholar

    [23]

    Thakur P, Cezar J C, Brookes N B, Choudhary R J, Prakash R, Phase D M, Chae K H, Kumar R 2009 Appl. Phys. Lett. 94 062501Google Scholar

    [24]

    Okumu J, Koerfer F, Salinga C, Wutting M 2004 J. Appl. Phys. 95 7632Google Scholar

    [25]

    Wang F, Pang Z, Lin L, Fang S, Dai Y, Han S 2010 Phys. Rev. B 81 134407Google Scholar

    [26]

    Ding H, Ray K G, Ozolins V, Asta M 2012 Phys. Rev. B 85 012104

    [27]

    Peelaers H, Van de Walle C G 2014 J. Phys.: Condens. Matter 26 305502Google Scholar

    [28]

    Ding H, Lin H, Sadigh B, Zhou F, Ozolinš V, Asta M 2014 J. Phys. Chem. C 118 15565Google Scholar

    [29]

    Kröger M, Hamwi S, Meyer J, Riedl T, Kowalsky W, Kahn A 2009 Appl. Phys. Lett. 95 123301Google Scholar

    [30]

    Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar

    [31]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671Google Scholar

    [32]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [33]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [34]

    Cococcioni M, Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [35]

    Kress G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Milman V, Lee M H, Payne M C 1994 Phys. Rev. B 49 16300Google Scholar

    [37]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [38]

    Marzari N, Vanderbilt D, Payne M C 1997 Phys. Rev. Lett. 79 1337Google Scholar

    [39]

    Chantis A N, Christensen N E, Svane A, Cardona M 2010 Phys. Rev. B 81 205205Google Scholar

    [40]

    Pfrommer B G, Cote M, Louie S G, Cohen M L 1997 J. Comput. Phys. 131 233Google Scholar

    [41]

    Segall M D, Shah R, Pickard C J, Payne M C 1996 Phys. Rev. B 54 16317Google Scholar

    [42]

    Negishi H, Negishi S, Kuroiwa Y, Sato N, Aoyagi S 2004 Phys. Rev. B 69 064111Google Scholar

    [43]

    Kalantar-zadeh K, Tang J, Wang M, Wang K L, Shailos A, Galatsis K, Kojima R, Strong V, Lech A, Wlodarski W, Kaner R B 2010 Nanoscale 2 429Google Scholar

    [44]

    Dandogbessi B S, Akin-Ojo O 2016 J. Appl. Phys. 120 055105Google Scholar

    [45]

    Zhong M Z, Zhou K, Wei Z M, Li Y, Li T, Dong H L, Jiang L, Li J B, Hu W P 2018 2D Mater. 5 035033Google Scholar

  • [1] Lin Hong-Bin, Lin Chun, Chen Yue, Zhong Ke-Hua, Zhang Jian-Min, Xu Gui-Gui, Huang Zhi-Gao. First-principles study of effect of Mg doping on structural stability and electronic structure of LiCoO2 cathode material. Acta Physica Sinica, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [2] Xu Xian-Da, Zhao Lei, Sun Wei-Feng. First-principles on the energy band mechanism for modifying conduction property of graphene nanomeshes. Acta Physica Sinica, 2020, 69(4): 047101. doi: 10.7498/aps.69.20190657
    [3] Yan Xiao-Tong, Hou Yu-Hua, Zheng Shou-Hong, Huang You-Lin, Tao Xiao-Ma. First-principles study of effects of Ga, Ge and As doping on electrochemical properties and electronic structure of Li2CoSiO4 serving as cathode material for Li-ion batteries. Acta Physica Sinica, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [4] Chi Ming-He, Zhao Lei. First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Acta Physica Sinica, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [5] Liu Hui-Ying, Zhang Xiu-Qin, Fang Yi-Mei, Zhu Zi-Zhong. Structural and electronic properties of T-graphene and its derivatives. Acta Physica Sinica, 2017, 66(16): 166101. doi: 10.7498/aps.66.166101
    [6] Gao Tan-Hua. Structural and electronic properties of hydrogenated bilayer silicene. Acta Physica Sinica, 2015, 64(7): 076801. doi: 10.7498/aps.64.076801
    [7] Gao Tan-Hua, Wu Shun-Qing, Zhang Peng, Zhu Zi-Zhong. Structural and electronic properties of hydrogenated bilayer boron nitride. Acta Physica Sinica, 2014, 63(1): 016801. doi: 10.7498/aps.63.016801
    [8] Wang Ping, Guo Li-Xin, Yang Yin-Tang, Zhang Zhi-Yong. First-principles study on electronic structures of Al, N Co-doped ZnO nanotubes. Acta Physica Sinica, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [9] Wang Ru-Zhi, Xu Li-Chun, Yan Hui, Kohyama Masanori. First-principles predictions for the tensile strength of Al metal with dislocations of twist grain boundaries. Acta Physica Sinica, 2012, 61(2): 026801. doi: 10.7498/aps.61.026801
    [10] Guan Dong-Bo, Mao Jian. First principles study of the electronic structure and optical properties of Magnli phase titanium suboxides Ti8O15. Acta Physica Sinica, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [11] Ri Chung-Ho, Li Lin, Qi Yang. Electronic structures and dielectric properties of BaCoxZn2-xFe16O27 from first principles. Acta Physica Sinica, 2012, 61(20): 207102. doi: 10.7498/aps.61.207102
    [12] Li Rong, Luo Xiao-Ling, Liang Guo-Ming, Fu Wen-Sheng. Influence of doped rare earth elements on the dehydrogenation properties of VH2. Acta Physica Sinica, 2012, 61(9): 093601. doi: 10.7498/aps.61.093601
    [13] Gao Tan-Hua, Liu Hui-Ying, Zhang Peng, Wu Shun-Qing, Yang Yong, Zhu Zi-Zhong. Structural and electronic properties of Al-doped spinel LiMn2O4. Acta Physica Sinica, 2012, 61(18): 187306. doi: 10.7498/aps.61.187306
    [14] Tang Xin, Zhang Qing-Yu, Lü Hai-Feng, Pu Chun-Ying. First-principles study on the electronic structures and structural stability of Cd-doped ZnO. Acta Physica Sinica, 2011, 60(3): 037101. doi: 10.7498/aps.60.037101
    [15] Ji Zheng-Hua, Zeng Xiang-Hua, Cen Jie-Ping, Tan Ming-Qiu. Electronic structure and phase transformation in ZnSe: An ab initio study. Acta Physica Sinica, 2010, 59(2): 1219-1224. doi: 10.7498/aps.59.1219
    [16] Xu Xin-Fa, Shao Xiao-Hong. Calculation of the electronic structure of Y-doped SrTiO3. Acta Physica Sinica, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [17] Wang Song-You, Duan Guo-Yu, Qiu Jian-Hong, Jia Yu, Chen Liang-Yao. PtN in zinc-blende structure: An unstable metallic transition-metal nitride compound. Acta Physica Sinica, 2006, 55(4): 1979-1982. doi: 10.7498/aps.55.1979
    [18] Meng Xing, Xu Xiao-Guang, Liu Wei, Sun Yuan, Chen Gang. First-principles investigation of charge disproportionation in HoNiO_3 perovskite. Acta Physica Sinica, 2004, 53(11): 3873-3876. doi: 10.7498/aps.53.3873
    [19] Chen Li-Juan, Hou Zhu-Feng, Zhu Zi-Zhong, Yang Yong. First-principles calculation of the vacancy formation energies in LiAl. Acta Physica Sinica, 2003, 52(9): 2229-2234. doi: 10.7498/aps.52.2229
    [20] Liu Hui-Ying, Hou Zhu-Feng, Zhu Zi-Zhong, Huang Mei-Chun, Yang Yong. First-principles calculation on the formation energies oflithium insertion in In Sb. Acta Physica Sinica, 2003, 52(7): 1732-1736. doi: 10.7498/aps.52.1732
Metrics
  • Abstract views:  19006
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2018
  • Accepted Date:  18 December 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回