-
As its parallel processing ability, quantum computing has an exponential acceleration over classical computing. However, quantum systems are fragile and susceptible to noise. Quantum error correction code is an effective means to overcome quantum noise. Quantum surface codes are topologically stable subcodes that have great potential for large-scale fault-tolerant quantum computing because of their structural nearest neighbor characteristics and high fault-tolerance thresholds. The existing boundary-based surface codes can encode one logical qubit. This paper mainly studies how to implement multi-logical-qubits encoding based on the boundary, including designing the structure of the surface code, finding out the corresponding stabilizers and logical operations according to the structure, and further designing the coding circuit based on the stabilizers. After research on the single qubit CNOT implementation principle based on measurement and correcting and the logic CNOT implementation based on fusion and segmentation, we further optimized implementation scheme of the logic CNOT implementation based on fusion and segmentation. The scheme is extended to the designed multi-logical-qubits surface code to realize the CNOT operation between the multi-logical-qubits surface codes, and the correctness of the quantum circuit is verified by simulation. The multi-logical-qubits surface code designed in this paper overcomes the disadvantage that the single-logical-qubit surface code can not be densely embedded in the quantum chip, improves the length of some logical operations, and increases the fault tolerance ability. The idea of joint measurement reduces the requirement for ancilla qubits and reduces the demand for quantum resources in the implementation process.
-
Keywords:
- quantum surface code /
- multi-logical-qubits encoding /
- logic CNOT gate /
- fusion operation /
- segmentation operation
[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[2] Shor P W 1999 SIREV 41 303Google Scholar
[3] Preskill J 2012 arXiv: 1203.5813v3 [quant-ph
[4] 张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar
Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar
[5] 周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar
Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar
[6] 宋克慧 2005 物理学报 54 4730Google Scholar
Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar
[7] Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212
[8] 范桁 2023 物理学报 72 070303Google Scholar
Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar
[9] Shor P W 1995 Phys. Rev. A 52 2493Google Scholar
[10] Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar
[11] Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar
[12] Davide C 2023 Nature 618 656
[13] Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar
[14] Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33
[15] Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar
[16] Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar
[17] Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188
[18] Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar
[19] Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar
[20] Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph
[21] Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar
[22] Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar
[23] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[24] 邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar
Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar
[25] Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar
[26] DiVincenzo D P 2009 Phys. Scr. 137 014020
[27] Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar
[28] Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar
[29] Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar
[30] Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph
[31] Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar
[32] Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar
[33] Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph
[34] Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar
[35] Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar
[36] Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph
[37] Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el
[38] Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar
[39] Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9
[40] Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8
[41] Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar
[42] Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar
-
图 10 不同输入状态下的仿真输出 (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|{\mathrm{CQ}}\right\rangle $ = $ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $
Figure 10. Simulation output under different input states: (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|\mathrm{CQ}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $
$X_{{\mathrm{L}}}$ $Z_{{\mathrm{L}}}$ $X_{{\mathrm{L}}1}=X_{1}X_{3}$ $Z_{{\mathrm{L}}1}=Z_{1}Z_{2} $ $X_{{\mathrm{L}}2}=X_{10}X_{12}$ $Z_{{\mathrm{L}}2}=Z_{5}Z_{10}$ $X_{{\mathrm{L}}3}=X_{8}X_{11}$ $Z_{{\mathrm{L}}3}=Z_{8}Z_{6} Z_{4} Z_{2}$ 表 2 对辅助比特M在Z基测量后的输出结果
Table 2. Output states after the measurements of ancilla qubit M in the Z basis.
测量结果 输出态 $M_{1}$=0, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$ $M_{1}$=0, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$ $M_{1}$=0, $M_{2}$=1, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )-\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$ $M_{1}$=0, $M_{2}$=1, $M_{3}$=1 $-\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$ $M_{1}$=1, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$ $M_{1}$=1, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$ $M_{1}$=1, $M_{2}$=1, $M_{3}$=0 $-\alpha \left |00 \right \rangle (m\left |1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left |1 \right \rangle)$ $M_{1}$=1, $M_{2}$=1, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )-\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$ 表 3 $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出
Table 3. Output when the input is $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$
测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011 $ \left|\mathrm{CQ}\right\rangle\otimes\left|\mathrm{INT}\right\rangle\otimes\left|\mathrm{TQ}\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ 测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111 $ \left|\mathrm{CQ}\right\rangle\otimes\mathrm{\left|INT\right\rangle}\otimes\mathrm{\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ 表 6 $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $时的输出
Table 6. Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $
测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ 测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ 表 4 $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出
Table 4. Output when the input is ${\mathrm{\left|{{CQ}}\right\rangle}} $=$\left|AB1\right\rangle $, $\left|{\mathrm{TQ}}\right\rangle $=$\left|CD1\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$
测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ 测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ 表 5 $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$时的输出
Table 5. Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$
测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ 测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111 $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ 表 7 两种逻辑CNOT门实现方法的资源消耗对比
Table 7. Comparison of the resource consumption of the two logic CNOT gate implementation methods
基于联合测量和
逻辑测量的方法基于晶格融合
与分割的方法辅助表面码的码距 3 4 辅助表面码的数据量子
比特数目13 25 量子门数目
(不含纠正操作)19 40 测量次数 3 15 最大纠正次数 2 15 000 001 010 011 100 101 110 111 $|000000000000\rangle$ $|010000110011\rangle$ $|000000000101\rangle$ $|010000110110\rangle$ $|000000010010\rangle$ $|010000100001\rangle$ $|000000010111\rangle$ $|010000100100\rangle$ $|000000001011\rangle$ $|010000111000\rangle$ $|000000001110\rangle$ $|010000111101\rangle$ $|000000011001\rangle$ $|010000101010\rangle$ $|000000011100\rangle$ $|010000101111\rangle$ $|000010100100\rangle$ $|010010010111\rangle$ $|000010100001\rangle$ $|010010010010\rangle$ $|000010110110\rangle$ $|010010000101\rangle$ $|000010110011\rangle$ $|010010000000\rangle$ $|000010101111\rangle$ $|010010011100\rangle$ $|000010101010\rangle$ $|010010011001\rangle$ $|000010111101\rangle$ $|010010001110\rangle$ $|000010111000\rangle$ $|010010001011\rangle$ $|000101100011\rangle$ $|010101010000\rangle$ $|000101100110\rangle$ $|010101010101\rangle$ $|000101110001\rangle$ $|010101000010\rangle$ $|000101110100\rangle$ $|010101000111\rangle$ $|000101101000\rangle$ $|010101011011\rangle$ $|000101101101\rangle$ $|010101011110\rangle$ $|000101111010\rangle$ $|010101001001\rangle$ $|000101111111\rangle$ $|010101001100\rangle$ $|000111000111\rangle$ $|010111110100\rangle$ $|000111000010\rangle$ $|010111110001\rangle$ $|000111010101\rangle$ $|010111100110\rangle$ $|000111010000\rangle$ $|010111100011\rangle$ $|000111001100\rangle$ $|010111111111\rangle$ $|000111001001\rangle$ $|010111111010\rangle$ $|000111011110\rangle$ $|010111101101\rangle$ $|000111011011\rangle$ $|010111101000\rangle$ $|001001010000\rangle$ $|011001100011\rangle$ $|001001010101\rangle$ $|011001100110\rangle$ $|001001000010\rangle$ $|011001110001\rangle$ $|001001000111\rangle$ $|011001110100\rangle$ $|001001011011\rangle$ $|011001101000\rangle$ $|001001011110\rangle$ $|011001101101\rangle$ $|001001001001\rangle$ $|011001111010\rangle$ $|001001001100\rangle$ $|011001111111\rangle$ $|001011110100\rangle$ $|011011000111\rangle$ $|001011110001\rangle$ $|011011000010\rangle$ $|001011100110\rangle$ $|011011010101\rangle$ $|001011100011\rangle$ $|011011010000\rangle$ $|001011111111\rangle$ $|011011001100\rangle$ $|001011111010\rangle$ $|011011001001\rangle$ $|001011101101\rangle$ $|011011011110\rangle$ $|001011101000\rangle$ $|011011011011\rangle$ $|001100110011\rangle$ $|011100000000\rangle$ $|001100110110\rangle$ $|011100000101\rangle$ $|001100100001\rangle$ $|011100010010\rangle$ $|001100100100\rangle$ $|011100010111\rangle$ $|001100111000\rangle$ $|011100001011\rangle$ $|001100111101\rangle$ $|011100001110\rangle$ $|001100101010\rangle$ $|011100011001\rangle$ $|001100101111\rangle$ $|011100011100\rangle$ $|001110010111\rangle$ $|011110100100\rangle$ $|001110010010\rangle$ $|011110100001\rangle$ $|001110000101\rangle$ $|011110110110\rangle$ $|001110000000\rangle$ $|011110110011\rangle$ $|001110011100\rangle$ $|011110101111\rangle$ $|001110011001\rangle$ $|011110101010\rangle$ $|001110001110\rangle$ $|011110111101\rangle$ $|001110001011\rangle$ $|011110111000\rangle$ $|110001100011\rangle$ $|100001010000\rangle$ $|110001100110\rangle$ $|100001010101\rangle$ $|110001110001\rangle$ $|100001000010\rangle$ $|110001110100\rangle$ $|100001000111\rangle$ $|110001101000\rangle$ $|100001011011\rangle$ $|110001101101\rangle$ $|100001011110\rangle$ $|110001111010\rangle$ $|100001001001\rangle$ $|110001111111\rangle$ $|100001001100\rangle$ $|110011000111\rangle$ $|100011110100\rangle$ $|110011000010\rangle$ $|100011110001\rangle$ $|110011010101\rangle$ $|100011100110\rangle$ $|110011010000\rangle$ $|100011100011\rangle$ $|110011001100\rangle$ $|100011111111\rangle$ $|110011001001\rangle$ $|100011111010\rangle$ $|110011011110\rangle$ $|100011101101\rangle$ $|110011011011\rangle$ $|100011101000\rangle$ $|110100000000\rangle$ $|100100110011\rangle$ $|110100000101\rangle$ $|100100110110\rangle$ $|110100010010\rangle$ $|100100100001\rangle$ $|110100010111\rangle$ $|100100100100\rangle$ $|110100001011\rangle$ $|100100111000\rangle$ $|110100001110\rangle$ $|100100111101\rangle$ $|110100011001\rangle$ $|100100101010\rangle$ $|110100011100\rangle$ $|100100101111\rangle$ $|110110100100\rangle$ $|100110010111\rangle$ $|110110100001\rangle$ $|100110010010\rangle$ $|110110110110\rangle$ $|100110000101\rangle$ $|110110110011\rangle$ $|100110000000\rangle$ $|110110101111\rangle$ $|100110011100\rangle$ $|110110101010\rangle$ $|100110011001\rangle$ $|110110111101\rangle$ $|100110001110\rangle$ $|110110111000\rangle$ $|100110001011\rangle$ $|111000110011\rangle$ $|101000000000\rangle$ $|111000110110\rangle$ $|101000000101\rangle$ $|111000100001\rangle$ $|101000010010\rangle$ $|111000100100\rangle$ $|101000010111\rangle$ $|111000111000\rangle$ $|101000001011\rangle$ $|111000111101\rangle$ $|101000001110\rangle$ $|111000101010\rangle$ $|101000011001\rangle$ $|111000101111\rangle$ $|101000011100\rangle$ $|111010010111\rangle$ $|101010100100\rangle$ $|111010010010\rangle$ $|101010100001\rangle$ $|111010000101\rangle$ $|101010110110\rangle$ $|111010000000\rangle$ $|101010110011\rangle$ $|111010011100\rangle$ $|101010101111\rangle$ $|111010011001\rangle$ $|101010101010\rangle$ $|111010001110\rangle$ $|101010111101\rangle$ $|111010001011\rangle$ $|101010111000\rangle$ $|111101010000\rangle$ $|101101100011\rangle$ $|111101010101\rangle$ $|101101100110\rangle$ $|111101000010\rangle$ $|101101110001\rangle$ $|111101000111\rangle$ $|101101110100\rangle$ $|111101011011\rangle$ $|101101101000\rangle$ $|111101011110\rangle$ $|101101101101\rangle$ $|111101001001\rangle$ $|101101111010\rangle$ $|111101001100\rangle$ $|101101111111\rangle$ $|111111110100\rangle$ $|101111000111\rangle$ $|111111110001\rangle$ $|101111000010\rangle$ $|111111100110\rangle$ $|101111010101\rangle$ $|111111100011\rangle$ $|101111010000\rangle$ $|111111111111\rangle$ $|101111001100\rangle$ $|111111111010\rangle$ $|101111001001\rangle$ $|111111101101\rangle$ $|101111011110\rangle$ $|111111101000\rangle$ $|101111011011\rangle$ -
[1] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[2] Shor P W 1999 SIREV 41 303Google Scholar
[3] Preskill J 2012 arXiv: 1203.5813v3 [quant-ph
[4] 张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar
Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar
[5] 周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar
Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar
[6] 宋克慧 2005 物理学报 54 4730Google Scholar
Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar
[7] Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212
[8] 范桁 2023 物理学报 72 070303Google Scholar
Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar
[9] Shor P W 1995 Phys. Rev. A 52 2493Google Scholar
[10] Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar
[11] Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar
[12] Davide C 2023 Nature 618 656
[13] Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar
[14] Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33
[15] Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar
[16] Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar
[17] Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188
[18] Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar
[19] Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar
[20] Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph
[21] Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar
[22] Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar
[23] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[24] 邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar
Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar
[25] Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar
[26] DiVincenzo D P 2009 Phys. Scr. 137 014020
[27] Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar
[28] Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar
[29] Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar
[30] Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph
[31] Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar
[32] Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar
[33] Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph
[34] Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar
[35] Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar
[36] Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph
[37] Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el
[38] Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar
[39] Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9
[40] Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8
[41] Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar
[42] Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar
Catalog
Metrics
- Abstract views: 2483
- PDF Downloads: 84
- Cited By: 0