Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure design and logical CNOT implementation of multi-logical-qubits surface code

Quan Dong-Xiao Lü Xiao-Jie Zhang Wen-Fei

Citation:

Structure design and logical CNOT implementation of multi-logical-qubits surface code

Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei
PDF
HTML
Get Citation
  • As its parallel processing ability, quantum computing has an exponential acceleration over classical computing. However, quantum systems are fragile and susceptible to noise. Quantum error correction code is an effective means to overcome quantum noise. Quantum surface codes are topologically stable subcodes that have great potential for large-scale fault-tolerant quantum computing because of their structural nearest neighbor characteristics and high fault-tolerance thresholds. The existing boundary-based surface codes can encode one logical qubit. This paper mainly studies how to implement multi-logical-qubits encoding based on the boundary, including designing the structure of the surface code, finding out the corresponding stabilizers and logical operations according to the structure, and further designing the coding circuit based on the stabilizers. After research on the single qubit CNOT implementation principle based on measurement and correcting and the logic CNOT implementation based on fusion and segmentation, we further optimized implementation scheme of the logic CNOT implementation based on fusion and segmentation. The scheme is extended to the designed multi-logical-qubits surface code to realize the CNOT operation between the multi-logical-qubits surface codes, and the correctness of the quantum circuit is verified by simulation. The multi-logical-qubits surface code designed in this paper overcomes the disadvantage that the single-logical-qubit surface code can not be densely embedded in the quantum chip, improves the length of some logical operations, and increases the fault tolerance ability. The idea of joint measurement reduces the requirement for ancilla qubits and reduces the demand for quantum resources in the implementation process.
      Corresponding author: Quan Dong-Xiao, dxquan@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62001351) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2019ZDLGY09-02).
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1999 SIREV 41 303Google Scholar

    [3]

    Preskill J 2012 arXiv: 1203.5813v3 [quant-ph

    [4]

    张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar

    Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar

    [5]

    周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar

    Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar

    [6]

    宋克慧 2005 物理学报 54 4730Google Scholar

    Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar

    [7]

    Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212

    [8]

    范桁 2023 物理学报 72 070303Google Scholar

    Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar

    [9]

    Shor P W 1995 Phys. Rev. A 52 2493Google Scholar

    [10]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [11]

    Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar

    [12]

    Davide C 2023 Nature 618 656

    [13]

    Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [14]

    Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33

    [15]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar

    [16]

    Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar

    [17]

    Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188

    [18]

    Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar

    [19]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph

    [21]

    Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar

    [22]

    Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar

    [23]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [24]

    邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar

    Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar

    [25]

    Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar

    [26]

    DiVincenzo D P 2009 Phys. Scr. 137 014020

    [27]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar

    [28]

    Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar

    [29]

    Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar

    [30]

    Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph

    [31]

    Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar

    [32]

    Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar

    [33]

    Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph

    [34]

    Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar

    [35]

    Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar

    [36]

    Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph

    [37]

    Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el

    [38]

    Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar

    [39]

    Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9

    [40]

    Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8

    [41]

    Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar

    [42]

    Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar

  • 图 1  3 × 3表面码的结构图

    Figure 1.  Structure diagram of 3 × 3 surface code

    图 2  基于边界编码三位逻辑比特的表面码结构

    Figure 2.  Structure of surface code based on boundary encoding three logical qubits

    图 3  图2所示编码三位逻辑比特表面码的编码线路图

    Figure 3.  Quantum encoding circuit for the surface code shown in Fig. 2

    图 4  基于联合测量的单量子比特间CNOT门的实现原理

    Figure 4.  CNOT gate implementation for single qubit based on joint measurement

    图 5  表面码的粗糙融合

    Figure 5.  Rough fusion of surface codes

    图 6  表面码的粗糙分割

    Figure 6.  Rough segmentation of surface codes

    图 7  表面码的光滑融合

    Figure 7.  Smooth fusion of surface codes

    图 8  表面码的光滑分割

    Figure 8.  Smooth segmentation of surface codes

    图 9  单逻辑比特量子表面码逻辑CNOT门的实现

    Figure 9.  Implementation of logic CNOT gate for the single logical qubit surface code

    图 10  不同输入状态下的仿真输出 (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|{\mathrm{CQ}}\right\rangle $ = $ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $

    Figure 10.  Simulation output under different input states: (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|\mathrm{CQ}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $

    图 11  基于联合测量和逻辑测量的多逻辑量子比特表面码逻辑CNOT门的实现

    Figure 11.  Implementation of logic CNOT gate for multiple logical qubits surface code based on joint measuremnt and logical measurement

    图 12  基于联合测量和逻辑测量的多逻辑量子比特表面码逻辑CNOT门的优化

    Figure 12.  Optimization of logic CNOT gate for multiple logical qubits surface code based on joint measuremnt and logical measurement

    图 13  控制比特和目标比特都为逻辑比特3时, 逻辑CNOT门的优化

    Figure 13.  Optimization of logic CNOT gate when both control qubit and target qubit are the 3rd logical qubits

    表 1  图2所示表面码的逻辑操作

    Table 1.  Logical operation of the surface code shown in Fig. 2

    $X_{{\mathrm{L}}}$ $Z_{{\mathrm{L}}}$
    $X_{{\mathrm{L}}1}=X_{1}X_{3}$ $Z_{{\mathrm{L}}1}=Z_{1}Z_{2} $
    $X_{{\mathrm{L}}2}=X_{10}X_{12}$ $Z_{{\mathrm{L}}2}=Z_{5}Z_{10}$
    $X_{{\mathrm{L}}3}=X_{8}X_{11}$ $Z_{{\mathrm{L}}3}=Z_{8}Z_{6} Z_{4} Z_{2}$
    DownLoad: CSV

    表 2  对辅助比特MZ基测量后的输出结果

    Table 2.  Output states after the measurements of ancilla qubit M in the Z basis.

    测量结果 输出态
    $M_{1}$=0, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=0, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=0, $M_{2}$=1, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )-\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=0, $M_{2}$=1, $M_{3}$=1 $-\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=1, $M_{2}$=1, $M_{3}$=0 $-\alpha \left |00 \right \rangle (m\left |1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left |1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=1, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )-\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    DownLoad: CSV

    表 3  $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出

    Table 3.  Output when the input is $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \left|\mathrm{CQ}\right\rangle\otimes\left|\mathrm{INT}\right\rangle\otimes\left|\mathrm{TQ}\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \left|\mathrm{CQ}\right\rangle\otimes\mathrm{\left|INT\right\rangle}\otimes\mathrm{\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    DownLoad: CSV

    表 6  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $时的输出

    Table 6.  Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    DownLoad: CSV

    表 4  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出

    Table 4.  Output when the input is ${\mathrm{\left|{{CQ}}\right\rangle}} $=$\left|AB1\right\rangle $, $\left|{\mathrm{TQ}}\right\rangle $=$\left|CD1\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    DownLoad: CSV

    表 5  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$时的输出

    Table 5.  Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    DownLoad: CSV

    表 7  两种逻辑CNOT门实现方法的资源消耗对比

    Table 7.  Comparison of the resource consumption of the two logic CNOT gate implementation methods

    基于联合测量和
    逻辑测量的方法
    基于晶格融合
    与分割的方法
    辅助表面码的码距 3 4
    辅助表面码的数据量子
    比特数目
    13 25
    量子门数目
    (不含纠正操作)
    19 40
    测量次数 3 15
    最大纠正次数 2 15
    DownLoad: CSV

    表 A1  图3所示的编码线路的8种输出码字

    Table A1.  Eight output codewords for the encoding circuit shown in Fig. 3

    000 001 010 011 100 101 110 111
    $|000000000000\rangle$ $|010000110011\rangle$ $|000000000101\rangle$ $|010000110110\rangle$ $|000000010010\rangle$ $|010000100001\rangle$ $|000000010111\rangle$ $|010000100100\rangle$
    $|000000001011\rangle$ $|010000111000\rangle$ $|000000001110\rangle$ $|010000111101\rangle$ $|000000011001\rangle$ $|010000101010\rangle$ $|000000011100\rangle$ $|010000101111\rangle$
    $|000010100100\rangle$ $|010010010111\rangle$ $|000010100001\rangle$ $|010010010010\rangle$ $|000010110110\rangle$ $|010010000101\rangle$ $|000010110011\rangle$ $|010010000000\rangle$
    $|000010101111\rangle$ $|010010011100\rangle$ $|000010101010\rangle$ $|010010011001\rangle$ $|000010111101\rangle$ $|010010001110\rangle$ $|000010111000\rangle$ $|010010001011\rangle$
    $|000101100011\rangle$ $|010101010000\rangle$ $|000101100110\rangle$ $|010101010101\rangle$ $|000101110001\rangle$ $|010101000010\rangle$ $|000101110100\rangle$ $|010101000111\rangle$
    $|000101101000\rangle$ $|010101011011\rangle$ $|000101101101\rangle$ $|010101011110\rangle$ $|000101111010\rangle$ $|010101001001\rangle$ $|000101111111\rangle$ $|010101001100\rangle$
    $|000111000111\rangle$ $|010111110100\rangle$ $|000111000010\rangle$ $|010111110001\rangle$ $|000111010101\rangle$ $|010111100110\rangle$ $|000111010000\rangle$ $|010111100011\rangle$
    $|000111001100\rangle$ $|010111111111\rangle$ $|000111001001\rangle$ $|010111111010\rangle$ $|000111011110\rangle$ $|010111101101\rangle$ $|000111011011\rangle$ $|010111101000\rangle$
    $|001001010000\rangle$ $|011001100011\rangle$ $|001001010101\rangle$ $|011001100110\rangle$ $|001001000010\rangle$ $|011001110001\rangle$ $|001001000111\rangle$ $|011001110100\rangle$
    $|001001011011\rangle$ $|011001101000\rangle$ $|001001011110\rangle$ $|011001101101\rangle$ $|001001001001\rangle$ $|011001111010\rangle$ $|001001001100\rangle$ $|011001111111\rangle$
    $|001011110100\rangle$ $|011011000111\rangle$ $|001011110001\rangle$ $|011011000010\rangle$ $|001011100110\rangle$ $|011011010101\rangle$ $|001011100011\rangle$ $|011011010000\rangle$
    $|001011111111\rangle$ $|011011001100\rangle$ $|001011111010\rangle$ $|011011001001\rangle$ $|001011101101\rangle$ $|011011011110\rangle$ $|001011101000\rangle$ $|011011011011\rangle$
    $|001100110011\rangle$ $|011100000000\rangle$ $|001100110110\rangle$ $|011100000101\rangle$ $|001100100001\rangle$ $|011100010010\rangle$ $|001100100100\rangle$ $|011100010111\rangle$
    $|001100111000\rangle$ $|011100001011\rangle$ $|001100111101\rangle$ $|011100001110\rangle$ $|001100101010\rangle$ $|011100011001\rangle$ $|001100101111\rangle$ $|011100011100\rangle$
    $|001110010111\rangle$ $|011110100100\rangle$ $|001110010010\rangle$ $|011110100001\rangle$ $|001110000101\rangle$ $|011110110110\rangle$ $|001110000000\rangle$ $|011110110011\rangle$
    $|001110011100\rangle$ $|011110101111\rangle$ $|001110011001\rangle$ $|011110101010\rangle$ $|001110001110\rangle$ $|011110111101\rangle$ $|001110001011\rangle$ $|011110111000\rangle$
    $|110001100011\rangle$ $|100001010000\rangle$ $|110001100110\rangle$ $|100001010101\rangle$ $|110001110001\rangle$ $|100001000010\rangle$ $|110001110100\rangle$ $|100001000111\rangle$
    $|110001101000\rangle$ $|100001011011\rangle$ $|110001101101\rangle$ $|100001011110\rangle$ $|110001111010\rangle$ $|100001001001\rangle$ $|110001111111\rangle$ $|100001001100\rangle$
    $|110011000111\rangle$ $|100011110100\rangle$ $|110011000010\rangle$ $|100011110001\rangle$ $|110011010101\rangle$ $|100011100110\rangle$ $|110011010000\rangle$ $|100011100011\rangle$
    $|110011001100\rangle$ $|100011111111\rangle$ $|110011001001\rangle$ $|100011111010\rangle$ $|110011011110\rangle$ $|100011101101\rangle$ $|110011011011\rangle$ $|100011101000\rangle$
    $|110100000000\rangle$ $|100100110011\rangle$ $|110100000101\rangle$ $|100100110110\rangle$ $|110100010010\rangle$ $|100100100001\rangle$ $|110100010111\rangle$ $|100100100100\rangle$
    $|110100001011\rangle$ $|100100111000\rangle$ $|110100001110\rangle$ $|100100111101\rangle$ $|110100011001\rangle$ $|100100101010\rangle$ $|110100011100\rangle$ $|100100101111\rangle$
    $|110110100100\rangle$ $|100110010111\rangle$ $|110110100001\rangle$ $|100110010010\rangle$ $|110110110110\rangle$ $|100110000101\rangle$ $|110110110011\rangle$ $|100110000000\rangle$
    $|110110101111\rangle$ $|100110011100\rangle$ $|110110101010\rangle$ $|100110011001\rangle$ $|110110111101\rangle$ $|100110001110\rangle$ $|110110111000\rangle$ $|100110001011\rangle$
    $|111000110011\rangle$ $|101000000000\rangle$ $|111000110110\rangle$ $|101000000101\rangle$ $|111000100001\rangle$ $|101000010010\rangle$ $|111000100100\rangle$ $|101000010111\rangle$
    $|111000111000\rangle$ $|101000001011\rangle$ $|111000111101\rangle$ $|101000001110\rangle$ $|111000101010\rangle$ $|101000011001\rangle$ $|111000101111\rangle$ $|101000011100\rangle$
    $|111010010111\rangle$ $|101010100100\rangle$ $|111010010010\rangle$ $|101010100001\rangle$ $|111010000101\rangle$ $|101010110110\rangle$ $|111010000000\rangle$ $|101010110011\rangle$
    $|111010011100\rangle$ $|101010101111\rangle$ $|111010011001\rangle$ $|101010101010\rangle$ $|111010001110\rangle$ $|101010111101\rangle$ $|111010001011\rangle$ $|101010111000\rangle$
    $|111101010000\rangle$ $|101101100011\rangle$ $|111101010101\rangle$ $|101101100110\rangle$ $|111101000010\rangle$ $|101101110001\rangle$ $|111101000111\rangle$ $|101101110100\rangle$
    $|111101011011\rangle$ $|101101101000\rangle$ $|111101011110\rangle$ $|101101101101\rangle$ $|111101001001\rangle$ $|101101111010\rangle$ $|111101001100\rangle$ $|101101111111\rangle$
    $|111111110100\rangle$ $|101111000111\rangle$ $|111111110001\rangle$ $|101111000010\rangle$ $|111111100110\rangle$ $|101111010101\rangle$ $|111111100011\rangle$ $|101111010000\rangle$
    $|111111111111\rangle$ $|101111001100\rangle$ $|111111111010\rangle$ $|101111001001\rangle$ $|111111101101\rangle$ $|101111011110\rangle$ $|111111101000\rangle$ $|101111011011\rangle$
    DownLoad: CSV
  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1999 SIREV 41 303Google Scholar

    [3]

    Preskill J 2012 arXiv: 1203.5813v3 [quant-ph

    [4]

    张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar

    Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar

    [5]

    周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar

    Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar

    [6]

    宋克慧 2005 物理学报 54 4730Google Scholar

    Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar

    [7]

    Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212

    [8]

    范桁 2023 物理学报 72 070303Google Scholar

    Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar

    [9]

    Shor P W 1995 Phys. Rev. A 52 2493Google Scholar

    [10]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [11]

    Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar

    [12]

    Davide C 2023 Nature 618 656

    [13]

    Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [14]

    Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33

    [15]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar

    [16]

    Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar

    [17]

    Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188

    [18]

    Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar

    [19]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph

    [21]

    Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar

    [22]

    Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar

    [23]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [24]

    邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar

    Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar

    [25]

    Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar

    [26]

    DiVincenzo D P 2009 Phys. Scr. 137 014020

    [27]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar

    [28]

    Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar

    [29]

    Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar

    [30]

    Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph

    [31]

    Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar

    [32]

    Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar

    [33]

    Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph

    [34]

    Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar

    [35]

    Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar

    [36]

    Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph

    [37]

    Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el

    [38]

    Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar

    [39]

    Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9

    [40]

    Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8

    [41]

    Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar

    [42]

    Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar

  • [1] Dou Shu-Qing, Yang Xiao-Kuo, Xia Yong-Shun, Yuan Jia-Hui, Cui Huan-Qing, Wei Bo, Bai Xin, Feng Chao-Wen. A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock. Acta Physica Sinica, 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [2] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [3] Jin Zhao, Li Rui, Gong Wei-Jiang, Qi Yang, Zhang Shou, Su Shi-Lei. Implementation of the Rydberg double anti-blockade regime and the quantum logic gate based on resonant dipole-dipole interactions. Acta Physica Sinica, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [4] Zhang Qian, Li Meng, Gong Qi-Huang, Li Yan. Femtosecond laser direct writing of optical quantum logic gates. Acta Physica Sinica, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [5] Wang Dian-Wei1\2, Han Peng-Fei, Fan Jiu-Lun, Liu Ying1\2, Xu Zhi-Jie, Wang Jing. Multispectral image enhancement based on illuminance-reflection imaging model and morphology operation. Acta Physica Sinica, 2018, 67(21): 210701. doi: 10.7498/aps.67.20181288
    [6] Wei Bo, Cai Li, Yang Xiao-Kuo, Li Cheng. Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet. Acta Physica Sinica, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [7] Wu Xiang-Yan, Xu Yan-Ling, Yu Ya-Fei, Zhang Zhi-Ming. Fault-tolerantly implementing dense rotation operations based on non-stabilizer states. Acta Physica Sinica, 2014, 63(22): 220304. doi: 10.7498/aps.63.220304
    [8] Zhang Bo, Li Hai-Yang, Tang Guo-Jin. Smith fuzzy control of teleoperation rendezvous with variable time delay. Acta Physica Sinica, 2013, 62(2): 029601. doi: 10.7498/aps.62.029601
    [9] Jin Xiao-Qin, Xu Yong, Zhang Hui-Qing. The reliability of logical operation in a one-dimensional bistable system induced by non-Gaussian noise. Acta Physica Sinica, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [10] Wang Wen-Rui, Yu Jin-Long, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Liu Yi, Yang En-Ze. All-optical logic gates based on nonlinear polarization rotation in high nonlinear fiber. Acta Physica Sinica, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [11] Yan Sen-Lin. Optoelectronic or all-optical logic gates using chaotic semiconductor lasers using mutual coupling-feedback. Acta Physica Sinica, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [12] Lu Dao-Ming. Entanglement properties of two-atom inside cavities controlled by manipulating the atom outside the cavity. Acta Physica Sinica, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [13] Zhang Guo-Feng, Xing Zhao. Swap operation in a two-qubit anisotropy XYZ model in the presence of an inhomogeneous magnetic field. Acta Physica Sinica, 2010, 59(3): 1468-1472. doi: 10.7498/aps.59.1468
    [14] Chen Li-Bing, Tan Peng, Dong Shao-Guang, Lu Hong. Controlled implementation of a nonlocal and open-target destination quantum controlled-Not (CNOT) gate using partially entangled pairs. Acta Physica Sinica, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] Dong Jian-Ji, Zhang Xin-Liang, Wang Yang, Huang De-Xiu. High speed reconfigurable logic gates based on single semiconductor optical amplifier. Acta Physica Sinica, 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [16] Li Yan-Ming, Chen Li-Xiang, She Wei-Long. Theoretical and experimental investigation on all-optical logic gates based on photoisomerization. Acta Physica Sinica, 2007, 56(10): 5895-5902. doi: 10.7498/aps.56.5895
    [17] Guo Qi, Zhang Xia-Ping, Hu Wei, Shou Qian. Photonic switching and logic gating with strongly nonlocal spatial optical solitons. Acta Physica Sinica, 2006, 55(4): 1832-1839. doi: 10.7498/aps.55.1832
    [18] Chen Ming-Lun, Wang Shun-Jin. Physical realization of single qubit gate using laser-two-level-atom system. Acta Physica Sinica, 2006, 55(9): 4638-4641. doi: 10.7498/aps.55.4638
    [19] Yan Xiao-Bo, Wang Shun-Jin. Single qubit and its universal logic gate made of an annular spin cluster with anisotropic Heisenberg-chain. Acta Physica Sinica, 2006, 55(4): 1591-1595. doi: 10.7498/aps.55.1591
    [20] Feng Xiao-Qiang, Hou Xun, Yang Wen-Zheng, Yang Qing, Chen Feng. Photonic logic gates based on bacteriorhodopsin. Acta Physica Sinica, 2003, 52(11): 2803-2806. doi: 10.7498/aps.52.2803
Metrics
  • Abstract views:  3036
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  14 July 2023
  • Accepted Date:  21 November 2023
  • Available Online:  22 December 2023
  • Published Online:  20 February 2024

/

返回文章
返回