Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock

Dou Shu-Qing Yang Xiao-Kuo Xia Yong-Shun Yuan Jia-Hui Cui Huan-Qing Wei Bo Bai Xin Feng Chao-Wen

Citation:

A nanomagnets majority logic gate based on heterogeneous multiferroic structure global strain clock

Dou Shu-Qing, Yang Xiao-Kuo, Xia Yong-Shun, Yuan Jia-Hui, Cui Huan-Qing, Wei Bo, Bai Xin, Feng Chao-Wen
PDF
HTML
Get Citation
  • In the post-Moore era, nanomagnetic logic circuits have shown great potential to replace complementary metal oxide semiconductor (CMOS) circuits. A majority logic gate, as the core of a nanomagnetic logic circuit, is equivalent to the inverter in the CMOS circuit. A nanomagnetic logic majority gate generally has four nanomagnets arranged in a “T” shape. The nanomagnets in the three corners of the “T” (I1, I2, I3) are the three inputs, and the middle nanomagnet is the output (O).This paper proposes a nanomagnet majority logic gate based on the global strain clock of heterogeneous multiferroic structure, by utilizing the difference in response to the same strain between positive magnetostrictive coefficient material (Terfenol-D) and negative magnetostrictive coefficient material (Ni). From bottom to top, the device is mainly composed of a silicon substrate, a piezoelectric layer, and four elliptical cylindrical nanomagnets. PMN-PT is used as the piezoelectric layer’s material, and three Ni-based nanomagnets (I1, I2, and I3) are utilized as input, while Terfenol-D is used as the material for the output nanomagnet (O).Besides, a two-step calculation mode of “high-stress start-low-stress calculation” is designed, that is, the O is first switched to the “Null” with a stress of –30 MPa, and then the stress decreases to –15 MPa, so that the O can realize majority calculation under the coupling of I1, I2, and I3. The micromagnetic simulation software MuMax3 is adopted to simulate the performance of the device. The results reveal that the device can successfully perform continuous majority calculation through any three-terminal input combination. By using the two-step calculation mode, the calculation accuracy of the device can reach 100%, its cycle of continuous calculation is 2.75 ns, and the cycle energy consumption is about 64 aJ. It is found that the change of energy potential well, caused by the change of stress anisotropy energy and dipole coupling energy, is the main reason that determines the magnetization dynamic behavior of the device. Therefore, the results of this paper can provide important guidance for designing nanomagnetic logic circuits.
      Corresponding author: Yang Xiao-Kuo, yangxk0123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62274183) and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2022JQ-073).
    [1]

    DeBenedictis, P E 2017 Computer 50 72Google Scholar

    [2]

    Liu S L, Hu X S, Nahas J J, Niemier M T, Porod W, Bernstein G H 2011 IEEE Trans. Nanotechnol. 10 757Google Scholar

    [3]

    Gypens P, Leliaert J, Van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004Google Scholar

    [4]

    Gonelli M, Fin S, Carlotti G, Dey H, Csaba G, Porod W, Bernstein G H, Bisero D 2018 J. Magn. Magn. Mater. 460 432Google Scholar

    [5]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G, Porod W 2006 Science 311 205Google Scholar

    [6]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G 2008 J. Nanoelectron. Optoelectron. 3 55Google Scholar

    [7]

    刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [8]

    Carlton D B, Lambson B, Scholl A, Young A T, Dhuey S D, Ashby P D, Tuchfeld E, Bokor J 2011 IEEE Trans. Nanotechnol. 10 1401Google Scholar

    [9]

    Gu Z, Nowakowski M E, Carlton D B, Storz R, Im M Y, Hong J, Chao W, Lambson B, Bennett P, Alam M T, Marcus M A, Doran A, Young A, Scholl A, Fischer P, Bokor J 2015 Nat. Commun. 6 6466Google Scholar

    [10]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [11]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105Google Scholar

    [12]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [13]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2011 IEEE Trans. Nanotechnol. 11 273Google Scholar

    [14]

    张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503Google Scholar

    Zhang M L, Cai L, Yang X K, Qin T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503Google Scholar

    [15]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [16]

    Suh D I, Bae G Y, Oh H S, Park W 2015 J. Appl. Phys. 117 17D714Google Scholar

    [17]

    Sengupta A, Choday S H, Kim Y, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [18]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [19]

    Liu M, Zou Q, Ma C R, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interfaces 6 8526Google Scholar

    [20]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D:Appl. Phys. 50 285001Google Scholar

    [21]

    Yuan J H, Yang X K, Wei B, Chen Y B, Cui H Q, Liu J H, Dou S Q, Song M X, Fei L 2023 Phys. Rev. Appl. 19 014003Google Scholar

    [22]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [23]

    危波, 蔡理, 杨晓阔, 李成 2017 物理学报 66 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2017 Acta Phys. Sin. 66 217501Google Scholar

    [24]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. Very Large Scale Integr. VLSI Syst. 21 1181Google Scholar

    [25]

    D’Souza N, Salehi Fashami M, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [26]

    Chen Y B, Yang X K, Wei B, Cui H Q, Song M X 2020 IEEE Access 8 77802Google Scholar

    [27]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [28]

    Chen A T, Piao H G, Zhang C H, Ma X P, Algaidi H, Ma Y C, Li Y, Zheng D X, Qiu Z D, Zhang X X 2023 Mater. Horiz. DOI: 10.1039/d3mh00378

    [29]

    Khojah R, Xiao Z, Panduranga M K, Bogumil M, Wang Y, Goiriena-Goikoetxea M, Chopdekar R V, Bokor J, Carman G P, Candler R N, Di Carlo D 2021 Adv. Mater. 33 2006651Google Scholar

    [30]

    Huang B, Zhu W, Hua L, Wang J, Guo Y 2022 Curr. Appl. Phys. 41 139Google Scholar

    [31]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [32]

    Pathak P, Mallick D 2022 IEEE Trans. Magn. 58 3401406Google Scholar

    [33]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412Google Scholar

    [34]

    Bhattacharya D, Al-Rashid M M, D'Souza N, Bandyopadhyay S, Atulasimha J 2017 Nanotechnology 28 015202Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D: Appl. Phys. 38 3333Google Scholar

    [37]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [38]

    Fidler J, Schrefl T 2000 J. Phys. D:Appl. Phys. 33 R135Google Scholar

    [39]

    Boechler G P, Whitney J M, Lent C S, Orlov A O, Snider G L 2010 Appl. Phys. Lett. 97 103502Google Scholar

  • 图 1  椭圆柱体纳磁体布尔逻辑编码方式

    Figure 1.  Cylindrical elliptical nanomagnet logic coding for Booleans.

    图 2  NMLC组件 (a)择多逻辑门 (b) 铁磁耦合互连线; (c) 反铁磁耦合互连线

    Figure 2.  NMLC Components: (a) Majority gate; (b) ferromagnetic coupling interconnect wire; (c) anti-ferromagnetic coupling interconnect wire.

    图 3  异质多铁结构全局应变时钟纳磁体择多逻辑门 (a) 立体结构; (b) 俯视图

    Figure 3.  Nanomagnets majority gate based on global strain clock of heterogeneous multiferroic structure: (a) Stereo structure; (b) top view.

    图 4  应变时钟作用示意图

    Figure 4.  Schematic diagram of strain clock.

    图 5  异质多铁择多门连续工作磁化动态过程 (a) 初始态000, 输入依次为“101”, “000”, “111”和“001”时的磁化动态曲线; (b) 第3周期, 即“0000”条件下输入“111”择多计算详细磁化动态过程; (c)—(n) 异质多铁择多门中纳磁体磁化状态

    Figure 5.  Magnetization dynamic process of the majority gate continuously work: (a) The dynamics of the magnetization curve when the initial state is “000” and the input is “101”, “000”, “111”, “001” in sequence; (b) the detailed magnetization dynamic process calculated at the third cycle, i.e., at input “111” under “0000” conditions; (c)–(n) magnetization states of nanomagnets in the majority gate.

    图 6  纳磁体能量势垒方向及其能量势阱方向 (a) 能量势阱附近的单侧波动; (b) 跨越短轴的双侧波动; (c) 施加极性相反的电压时或者撤去电压后, 磁矩进动的方向

    Figure 6.  Nanomagnet’s energy potential well direction and its energy barrier direction: (a) Unilateral fluctuations near the energy potential well; (b) bilateral fluctuations across the short axis; (c) the direction of the magnetic moment progresses when a voltage of opposite polarity is applied or when the voltage is removed.

    图 7  异质多铁择多门所有择多计算情形下, O的磁矩的动态变化. 0—0.5 ns, 施加–30 MPa应力; 0.5—3 ns, 施加–15 MPa应力. “000-0”代表初始状态为: I1I2I3 = 000, O = 0时O的磁矩的动态变化曲线

    Figure 7.  Dynamic variation of the magnetic moment of O for all calculation cases of the logic gate. 0–0.5 ns, –30 MPa stress applied; 0.5–3 ns, –15 MPa stress applied. “000-0” represents the dynamic variation of the magnetic moment of O when the initial state is: I1I2I3 = 000 and O = 0.

    图 8  信息传出逻辑门的所有情形下, OTO的磁矩的动态变化. 全局应变时钟: 0—0.5 ns, 施加–30 MPa应力; 0.5—1.5 ns, 施加–15 MPa应力; 1.5—2.5 ns, 施加250 MPa应力. TO控制时钟: 0—2.5 ns, 施加300 MPa应力. “000-0”代表初始状态为: I1I2I3 = 000且O = 0时, O的磁矩的动态曲线; “0000-0”代表初始状态为: I1I2I3O = 0000且TO = 0时, TO的磁矩的动态曲线

    Figure 8.  Dynamic variation of the magnetic moments of O and TO for all cases of information passing out of the logic gate. Global strain clock: 0–0.5 ns, –30 MPa stress applied; 0.5–1.5 ns, –15 MPa stress applied; 1.5–2.5 ns, 250 MPa stress applied. TO control clock: 0–2.5 ns, 300 MPa stress applied. “000-0” represents the dynamic curve of the magnetic moment of O when the initial state is: I1I2I3 = 000 and O = 0; “0000-0” represents the dynamic curve of the magnetic moment of TO when the initial state is: I1I2I3O = 0000 and TO = 0.

    图 9  异质多铁择多门连续计算时的能量演化 (a) 全局应变时钟; (b)—(f) I1, I2, I3, OTO的能量密度; (g) TO 控制时钟

    Figure 9.  Energy evolution during continuous computation of the logic gate: (a) Global strain clock; (b)–(f) energy density of I1, I2, I3, O and TO; (g) control the clock of TO.

    图 10  纳磁体磁矩偏转90° (a)—(c) 一致的单畴态偏转; (a), (d)—(g), (c) 非一致的“C”形态偏转

    Figure 10.  Nanomagnet magnetic moment switching 90°: (a)–(c) Uniform single-domain Switching; (a), (d)–(g), (c) non-uniform “C” form Switching.

    表 1  器件尺寸及布局参数

    Table 1.  Parameters of the device size and layout.

    名称尺寸/nm名称尺寸/nm
    所有纳磁体长轴 a120I2O间距 l180
    所有纳磁体厚度 h10I1, I3O间距 l2120
    O的短轴 b190TOO间距 l350
    其余纳磁体短轴 b280T1, T2, T3分别
    I2, I2, I3
    水平间距 l4
    20
    压电层长度 ly700T1, T2, T 3分别
    I2, I2, I3
    垂直中心距 l5
    80
    压电层宽度 lx265压电层厚度 lz100
    DownLoad: CSV

    表 2  纳磁体材料参数

    Table 2.  Material parameters of nanomagnets.

    Terfenol-DNi
    杨氏模量 Y/1010 Pa821.4
    磁致伸缩系数 λS/10–4+6–0.2
    吉尔伯特阻尼系数 α0.10.045
    饱和磁化强度 MS/(105 A·m–1)84.85
    交换作用常数 A/(10–11 J·m–1)0.91.05
    DownLoad: CSV

    表 3  应变时钟参数

    Table 3.  Strain clock parameters.

    时钟参数数值/MPa时钟参数数值/ns
    σ+250t11.25
    σH––30t21.75
    σL––15t32.75
    $ \sigma_{T_{O} } $300t43
    DownLoad: CSV
  • [1]

    DeBenedictis, P E 2017 Computer 50 72Google Scholar

    [2]

    Liu S L, Hu X S, Nahas J J, Niemier M T, Porod W, Bernstein G H 2011 IEEE Trans. Nanotechnol. 10 757Google Scholar

    [3]

    Gypens P, Leliaert J, Van Waeyenberge B 2018 Phys. Rev. Appl. 9 034004Google Scholar

    [4]

    Gonelli M, Fin S, Carlotti G, Dey H, Csaba G, Porod W, Bernstein G H, Bisero D 2018 J. Magn. Magn. Mater. 460 432Google Scholar

    [5]

    Imre A, Csaba G, Ji L, Orlov A, Bernstein G, Porod W 2006 Science 311 205Google Scholar

    [6]

    Orlov A, Imre A, Csaba G, Ji L, Porod W, Bernstein G 2008 J. Nanoelectron. Optoelectron. 3 55Google Scholar

    [7]

    刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜 2019 物理学报 68 017501Google Scholar

    Liu J H, Yang X K, Wei B, Li C, Zhang M L, Li C, Dong D N 2019 Acta Phys. Sin. 68 017501Google Scholar

    [8]

    Carlton D B, Lambson B, Scholl A, Young A T, Dhuey S D, Ashby P D, Tuchfeld E, Bokor J 2011 IEEE Trans. Nanotechnol. 10 1401Google Scholar

    [9]

    Gu Z, Nowakowski M E, Carlton D B, Storz R, Im M Y, Hong J, Chao W, Lambson B, Bennett P, Alam M T, Marcus M A, Doran A, Young A, Scholl A, Fischer P, Bokor J 2015 Nat. Commun. 6 6466Google Scholar

    [10]

    杨晓阔, 张斌, 崔焕卿, 李伟伟, 王森 2016 物理学报 65 237502Google Scholar

    Yang X K, Zhang B, Cui H Q, Li W W, Wang S 2016 Acta Phys. Sin. 65 237502Google Scholar

    [11]

    Atulasimha J, Bandyopadhyay S 2010 Appl. Phys. Lett. 97 173105Google Scholar

    [12]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 027501Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 027501Google Scholar

    [13]

    Alam M T, Kurtz S J, Siddiq M A J, Niemier M T, Bernstein G H, Hu X S, Porod W 2011 IEEE Trans. Nanotechnol. 11 273Google Scholar

    [14]

    张明亮, 蔡理, 杨晓阔, 秦涛, 刘小强, 冯朝文, 王森 2014 物理学报 63 227503Google Scholar

    Zhang M L, Cai L, Yang X K, Qin T, Liu X Q, Feng C W, Wang S 2014 Acta Phys. Sin. 63 227503Google Scholar

    [15]

    Bhowmik D, You L, Salahuddin S 2014 Nat. Nanotechnol. 9 59Google Scholar

    [16]

    Suh D I, Bae G Y, Oh H S, Park W 2015 J. Appl. Phys. 117 17D714Google Scholar

    [17]

    Sengupta A, Choday S H, Kim Y, Roy K 2015 Appl. Phys. Lett. 106 143701Google Scholar

    [18]

    Ostwal V, Debashis P, Faria R, Chen Z H, Appenzeller J 2018 Sci. Rep. 8 16689Google Scholar

    [19]

    Liu M, Zou Q, Ma C R, Collins G, Mi S B, Jia C L, Guo H M, Gao H J, Chen C L 2014 ACS Appl. Mater. Interfaces 6 8526Google Scholar

    [20]

    Cui H Q, Cai L, Yang X K, Wang S, Feng C W, Xu L, Zhang M L 2017 J. Phys. D:Appl. Phys. 50 285001Google Scholar

    [21]

    Yuan J H, Yang X K, Wei B, Chen Y B, Cui H Q, Liu J H, Dou S Q, Song M X, Fei L 2023 Phys. Rev. Appl. 19 014003Google Scholar

    [22]

    Bandyopadhyay S, Atulasimha J, Barman A 2021 Appl. Phys. Rev. 8 041323Google Scholar

    [23]

    危波, 蔡理, 杨晓阔, 李成 2017 物理学报 66 217501Google Scholar

    Wei B, Cai L, Yang X K, Li C 2017 Acta Phys. Sin. 66 217501Google Scholar

    [24]

    Yilmaz Y, Mazumder P 2013 IEEE Trans. Very Large Scale Integr. VLSI Syst. 21 1181Google Scholar

    [25]

    D’Souza N, Salehi Fashami M, Bandyopadhyay S, Atulasimha J 2016 Nano Lett. 16 1069Google Scholar

    [26]

    Chen Y B, Yang X K, Wei B, Cui H Q, Song M X 2020 IEEE Access 8 77802Google Scholar

    [27]

    Zhang J, Lee W K, Tu R, Rhee D, Zhao R, Wang X, Liu X, Hu X, Zhang X, Odom T, Yan M 2021 Nano Lett. 21 5430Google Scholar

    [28]

    Chen A T, Piao H G, Zhang C H, Ma X P, Algaidi H, Ma Y C, Li Y, Zheng D X, Qiu Z D, Zhang X X 2023 Mater. Horiz. DOI: 10.1039/d3mh00378

    [29]

    Khojah R, Xiao Z, Panduranga M K, Bogumil M, Wang Y, Goiriena-Goikoetxea M, Chopdekar R V, Bokor J, Carman G P, Candler R N, Di Carlo D 2021 Adv. Mater. 33 2006651Google Scholar

    [30]

    Huang B, Zhu W, Hua L, Wang J, Guo Y 2022 Curr. Appl. Phys. 41 139Google Scholar

    [31]

    Jin T L, Hao L, Cao J W, Liu M F, Dang H G, Wang Y, Wu D P, Bai J M, Wei F L 2014 Appl. Phys. Express 7 043002Google Scholar

    [32]

    Pathak P, Mallick D 2022 IEEE Trans. Magn. 58 3401406Google Scholar

    [33]

    Roy K, Bandyopadhyay S, Atulasimha J 2011 Phys. Rev. B 83 224412Google Scholar

    [34]

    Bhattacharya D, Al-Rashid M M, D'Souza N, Bandyopadhyay S, Atulasimha J 2017 Nanotechnology 28 015202Google Scholar

    [35]

    Chen Y B, Wei B, Yang X K, Liu J H, Li J, Cui H Q, Li C, Song M X 2020 J. Magn. Magn. Mater. 514 167216Google Scholar

    [36]

    Beleggia M, Graef M D, Millev Y T, Goode D A, Rowlands G 2005 J. Phys. D: Appl. Phys. 38 3333Google Scholar

    [37]

    Vacca M, Graziano M, Crescenzo L D, Chiolerio A, Lamberti A, Balma D, Canavese G, Celegato F, Enrico E, Tiberto P, Boarino L, Zamboni M 2014 IEEE Trans. Nanotechnol. 13 963Google Scholar

    [38]

    Fidler J, Schrefl T 2000 J. Phys. D:Appl. Phys. 33 R135Google Scholar

    [39]

    Boechler G P, Whitney J M, Lent C S, Orlov A O, Snider G L 2010 Appl. Phys. Lett. 97 103502Google Scholar

  • [1] Gao Jin-Wei, Chen Lu, Li Xu-Hong, Shi Jun-Qin, Cao Teng-Fei, Fan Xiao-Li. Intrinsic multiferroic semiconductors with magnetoelastic coupling: two-dimensional MoTeX (X = F, Cl, Br, I) monolayers. Acta Physica Sinica, 2024, 73(19): 197501. doi: 10.7498/aps.73.20240829
    [2] Xia Yong-Shun, Yang Xiao-Kuo, Dou Shu-Qing, Cui Huan-Qing, Wei Bo, Liang Bu-Jia, Yan Xu. Ultra-low power magneto-elastic analog-to-digital converter based on magnetic tunnel junctions and bicomponent multiferroic nanomagnet. Acta Physica Sinica, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [3] Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei. Structure design and logical CNOT implementation of multi-logical-qubits surface code. Acta Physica Sinica, 2024, 73(4): 040304. doi: 10.7498/aps.73.20231138
    [4] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [5] Liu Jia-Hao,  Yang Xiao-Kuo,  Wei Bo,  Li Cheng,  Zhang Ming-Liang,  Li Chuang,  Dong Dan-Na. Modeling of stress-regulated AND (OR) logic gate based on flipping preference of tilted nanomagnet. Acta Physica Sinica, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [6] Yu Bin, Hu Zhong-Qiang, Cheng Yu-Xin, Peng Bin, Zhou Zi-Yao, Liu Ming. Recent progress of multiferroic magnetoelectric devices. Acta Physica Sinica, 2018, 67(15): 157507. doi: 10.7498/aps.67.20180857
    [7] Liu Xiao-Qiang, Wu Shu-Ya, Zhu Xiao-Li, Chen Xiang-Ming. Hybrid improper ferroelectricity and multiferroic in Ruddlesden-Popper structures. Acta Physica Sinica, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [8] Chi Ming-He, Zhao Lei. First-principles study of magnetic order in graphene nanoflakes as spin logic devices. Acta Physica Sinica, 2018, 67(21): 217101. doi: 10.7498/aps.67.20181297
    [9] Chen Ai-Tian, Zhao Yong-Gang. Progress of converse magnetoelectric coupling effect in multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157513. doi: 10.7498/aps.67.20181272
    [10] Song Xiao, Gao Xing-Sen, Liu Jun-Ming. Electric field driven magnetic switching in nanoscale multiferroic heterostructures. Acta Physica Sinica, 2018, 67(15): 157512. doi: 10.7498/aps.67.20181219
    [11] Wei Bo, Cai Li, Yang Xiao-Kuo, Li Cheng. Three-dimensional magnetization dynamics in majority gate studied by using multiferroic nanomagnet. Acta Physica Sinica, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [12] Wang Sen, Cai Li, Cui Huan-Qing, Feng Chao-Wen, Wang Jun, Qi Kai. Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet. Acta Physica Sinica, 2016, 65(9): 098501. doi: 10.7498/aps.65.098501
    [13] Yang Xiao-Kuo, Zhang Bin, Cui Huan-Qing, Li Wei-Wei, Wang Sen. Magnetization dynamics in ferromagnetic coupling interconnect wire using multiferroic logic scheme. Acta Physica Sinica, 2016, 65(23): 237502. doi: 10.7498/aps.65.237502
    [14] Song Gui-Lin, Su Jian, Zhang Na, Chang Fang-Gao. Dielectric properties and high temperature magnetic behavior on multiferroics Bi1-xCaxFeO3 ceramics. Acta Physica Sinica, 2015, 64(24): 247502. doi: 10.7498/aps.64.247502
    [15] Zhang Ming-Liang, Cai Li, Yang Xiao-Kuo, Qin Tao, Liu Xiao-Qiang, Feng Chao-Wen, Wang Sen. On-chip clocking for exchange-interaction-based nanomagnetic logic circuits. Acta Physica Sinica, 2014, 63(22): 227503. doi: 10.7498/aps.63.227503
    [16] Wei Jie, Chen Yan-Jun, Xu Zhuo. Study on the size-dependent magnetic properties of multiferroic BiFeO3 nanoparticles. Acta Physica Sinica, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [17] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [18] Zhong Chong-Gui, Jiang Qing, Fang Jing-Huai, Jiang Xue-Fan, Luo Li-Jin. Electric-field-induced magnetization in 1-3 type multiferroic nanocomposite thin film. Acta Physica Sinica, 2009, 58(10): 7227-7234. doi: 10.7498/aps.58.7227
    [19] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. Nanoelectronic logic circuits with carbon nanotube transistors. Acta Physica Sinica, 2007, 56(2): 1054-1060. doi: 10.7498/aps.56.1054
    [20] Liu Tian-Liang, Huang Hai-Jun. Multi-agent simulation on day-to-day route choice behavior. Acta Physica Sinica, 2007, 56(11): 6321-6325. doi: 10.7498/aps.56.6321
Metrics
  • Abstract views:  3057
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2023
  • Accepted Date:  03 July 2023
  • Available Online:  07 July 2023
  • Published Online:  05 August 2023

/

返回文章
返回