搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多逻辑比特表面码结构设计及其逻辑CNOT门实现

权东晓 吕晓杰 张雯菲

引用本文:
Citation:

多逻辑比特表面码结构设计及其逻辑CNOT门实现

权东晓, 吕晓杰, 张雯菲

Structure design and logical CNOT implementation of multi-logical-qubits surface code

Quan Dong-Xiao, Lü Xiao-Jie, Zhang Wen-Fei
PDF
HTML
导出引用
  • 量子计算因具有并行处理能力, 相比于经典计算有着指数级的加速, 但量子系统具有脆弱性, 极易受到噪声的影响, 量子纠错码是克服量子噪声的有效手段. 量子表面码是一种拓扑稳定子码, 由于其结构上的最近邻居特点和较高的容错阈值, 表面码在大规模容错量子计算方面具有巨大的潜力. 目前已有的基于边界的表面码均为编码一个逻辑比特的表面码, 本文主要研究基于边界如何实现多逻辑量子比特的编码, 包括设计表面码的结构, 根据结构找出对应的稳定子和逻辑操作, 进一步根据稳定子设计出基于稳定子实现的编码线路; 在研究基于测量和纠正的单量子比特间CNOT实现原理和基于融合操作和分割操作的单逻辑量子比特表面码间CNOT门实现原理的基础上, 优化了基于融合操作和分割操作的单逻辑量子比特表面码间CNOT门实现方案, 将其扩展到所设计的多逻辑量子比特表面码上实现了多逻辑量子比特表面码之间的CNOT操作, 并通过仿真验证量子线路的正确性. 本文设计的多逻辑比特表面码克服了单比特表面码不能密铺于量子芯片的缺点且提高了某些逻辑操作的长度, 提高了容错能力. 基于联合测量的思想降低了对辅助比特的要求且减小了实现过程中对量子资源的需求.
    As its parallel processing ability, quantum computing has an exponential acceleration over classical computing. However, quantum systems are fragile and susceptible to noise. Quantum error correction code is an effective means to overcome quantum noise. Quantum surface codes are topologically stable subcodes that have great potential for large-scale fault-tolerant quantum computing because of their structural nearest neighbor characteristics and high fault-tolerance thresholds. The existing boundary-based surface codes can encode one logical qubit. This paper mainly studies how to implement multi-logical-qubits encoding based on the boundary, including designing the structure of the surface code, finding out the corresponding stabilizers and logical operations according to the structure, and further designing the coding circuit based on the stabilizers. After research on the single qubit CNOT implementation principle based on measurement and correcting and the logic CNOT implementation based on fusion and segmentation, we further optimized implementation scheme of the logic CNOT implementation based on fusion and segmentation. The scheme is extended to the designed multi-logical-qubits surface code to realize the CNOT operation between the multi-logical-qubits surface codes, and the correctness of the quantum circuit is verified by simulation. The multi-logical-qubits surface code designed in this paper overcomes the disadvantage that the single-logical-qubit surface code can not be densely embedded in the quantum chip, improves the length of some logical operations, and increases the fault tolerance ability. The idea of joint measurement reduces the requirement for ancilla qubits and reduces the demand for quantum resources in the implementation process.
      通信作者: 权东晓, dxquan@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62001351)和陕西省重点研发计划(批准号: 2019ZDLGY09-02)资助的课题.
      Corresponding author: Quan Dong-Xiao, dxquan@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62001351) and the Key Research and Development Program of Shaanxi Province, China (Grant No. 2019ZDLGY09-02).
    [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1999 SIREV 41 303Google Scholar

    [3]

    Preskill J 2012 arXiv: 1203.5813v3 [quant-ph

    [4]

    张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar

    Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar

    [5]

    周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar

    Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar

    [6]

    宋克慧 2005 物理学报 54 4730Google Scholar

    Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar

    [7]

    Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212

    [8]

    范桁 2023 物理学报 72 070303Google Scholar

    Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar

    [9]

    Shor P W 1995 Phys. Rev. A 52 2493Google Scholar

    [10]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [11]

    Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar

    [12]

    Davide C 2023 Nature 618 656

    [13]

    Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [14]

    Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33

    [15]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar

    [16]

    Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar

    [17]

    Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188

    [18]

    Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar

    [19]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph

    [21]

    Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar

    [22]

    Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar

    [23]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [24]

    邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar

    Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar

    [25]

    Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar

    [26]

    DiVincenzo D P 2009 Phys. Scr. 137 014020

    [27]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar

    [28]

    Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar

    [29]

    Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar

    [30]

    Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph

    [31]

    Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar

    [32]

    Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar

    [33]

    Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph

    [34]

    Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar

    [35]

    Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar

    [36]

    Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph

    [37]

    Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el

    [38]

    Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar

    [39]

    Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9

    [40]

    Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8

    [41]

    Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar

    [42]

    Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar

  • 图 1  3 × 3表面码的结构图

    Fig. 1.  Structure diagram of 3 × 3 surface code

    图 2  基于边界编码三位逻辑比特的表面码结构

    Fig. 2.  Structure of surface code based on boundary encoding three logical qubits

    图 3  图2所示编码三位逻辑比特表面码的编码线路图

    Fig. 3.  Quantum encoding circuit for the surface code shown in Fig. 2

    图 4  基于联合测量的单量子比特间CNOT门的实现原理

    Fig. 4.  CNOT gate implementation for single qubit based on joint measurement

    图 5  表面码的粗糙融合

    Fig. 5.  Rough fusion of surface codes

    图 6  表面码的粗糙分割

    Fig. 6.  Rough segmentation of surface codes

    图 7  表面码的光滑融合

    Fig. 7.  Smooth fusion of surface codes

    图 8  表面码的光滑分割

    Fig. 8.  Smooth segmentation of surface codes

    图 9  单逻辑比特量子表面码逻辑CNOT门的实现

    Fig. 9.  Implementation of logic CNOT gate for the single logical qubit surface code

    图 10  不同输入状态下的仿真输出 (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|{\mathrm{CQ}}\right\rangle $ = $ \left|1\right\rangle $, $ \left|{\mathrm{TQ}}\right\rangle $=$ \left|1\right\rangle $

    Fig. 10.  Simulation output under different input states: (a)$ \left|{\mathrm{CQ}}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (b)$ \left|\mathrm{CQ}\right\rangle $=$ \left|0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $; (c)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|0\right\rangle $; (d)$ \left|\mathrm{CQ}\right\rangle $=$ \left|1\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$ \left|1\right\rangle $

    图 11  基于联合测量和逻辑测量的多逻辑量子比特表面码逻辑CNOT门的实现

    Fig. 11.  Implementation of logic CNOT gate for multiple logical qubits surface code based on joint measuremnt and logical measurement

    图 12  基于联合测量和逻辑测量的多逻辑量子比特表面码逻辑CNOT门的优化

    Fig. 12.  Optimization of logic CNOT gate for multiple logical qubits surface code based on joint measuremnt and logical measurement

    图 13  控制比特和目标比特都为逻辑比特3时, 逻辑CNOT门的优化

    Fig. 13.  Optimization of logic CNOT gate when both control qubit and target qubit are the 3rd logical qubits

    表 1  图2所示表面码的逻辑操作

    Table 1.  Logical operation of the surface code shown in Fig. 2

    $X_{{\mathrm{L}}}$ $Z_{{\mathrm{L}}}$
    $X_{{\mathrm{L}}1}=X_{1}X_{3}$ $Z_{{\mathrm{L}}1}=Z_{1}Z_{2} $
    $X_{{\mathrm{L}}2}=X_{10}X_{12}$ $Z_{{\mathrm{L}}2}=Z_{5}Z_{10}$
    $X_{{\mathrm{L}}3}=X_{8}X_{11}$ $Z_{{\mathrm{L}}3}=Z_{8}Z_{6} Z_{4} Z_{2}$
    下载: 导出CSV

    表 2  对辅助比特MZ基测量后的输出结果

    Table 2.  Output states after the measurements of ancilla qubit M in the Z basis.

    测量结果 输出态
    $M_{1}$=0, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=0, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=0, $M_{2}$=1, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 0 \right \rangle+n\left | 1 \right \rangle )-\beta \left | 10 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=0, $M_{2}$=1, $M_{3}$=1 $-\alpha \left |01 \right \rangle (m\left |1 \right \rangle+n\left |0 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=0, $M_{3}$=0 $\alpha \left |00 \right \rangle (m\left | 1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left | 1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=0, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )+\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    $M_{1}$=1, $M_{2}$=1, $M_{3}$=0 $-\alpha \left |00 \right \rangle (m\left |1 \right \rangle+n\left | 0 \right \rangle )+\beta \left | 10 \right \rangle(m\left | 0 \right \rangle+n\left |1 \right \rangle)$
    $M_{1}$=1, $M_{2}$=1, $M_{3}$=1 $\alpha \left |01 \right \rangle (m\left |0 \right \rangle+n\left |1 \right \rangle )-\beta \left | 11 \right \rangle(m\left | 1 \right \rangle+n\left | 0 \right \rangle)$
    下载: 导出CSV

    表 3  $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出

    Table 3.  Output when the input is $ \left|\mathrm{CQ}\right\rangle $=$\left|AB0\right\rangle $, $ \left|\mathrm{TQ}\right\rangle $=$\left|CD0\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \left|\mathrm{CQ}\right\rangle\otimes\left|\mathrm{INT}\right\rangle\otimes\left|\mathrm{TQ}\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \left|\mathrm{CQ}\right\rangle\otimes\mathrm{\left|INT\right\rangle}\otimes\mathrm{\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    下载: 导出CSV

    表 6  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $时的输出

    Table 6.  Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB0\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left (A, B, C, D\in {(0, 1)}\right) $

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB0\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    下载: 导出CSV

    表 4  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD1\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$ 时的输出

    Table 4.  Output when the input is ${\mathrm{\left|{{CQ}}\right\rangle}} $=$\left|AB1\right\rangle $, $\left|{\mathrm{TQ}}\right\rangle $=$\left|CD1\right\rangle $, $\left( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD0\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD0\right\rangle $
    下载: 导出CSV

    表 5  $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$时的输出

    Table 5.  Output when the input is $ \mathrm{\left|CQ\right\rangle} $=$\left|AB1\right\rangle $, $ \mathrm{\left|TQ\right\rangle} $=$\left|CD0\right\rangle $, $\left ( A, B, C, D\in {(0, 1)}\right )$

    测量结果($M_{1}$$M_{2}$$M_{3}$) 000 001 010 011
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    测量结果($M_{1}$$M_{2}$$M_{3}$) 100 101 110 111
    $ \mathrm{\left|CQ\right\rangle\otimes\left|INT\right\rangle\otimes\left|TQ\right\rangle} $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|0\right\rangle \left|CD1\right\rangle $ $\left|AB1\right\rangle \left|1\right\rangle \left|CD1\right\rangle $
    下载: 导出CSV

    表 7  两种逻辑CNOT门实现方法的资源消耗对比

    Table 7.  Comparison of the resource consumption of the two logic CNOT gate implementation methods

    基于联合测量和
    逻辑测量的方法
    基于晶格融合
    与分割的方法
    辅助表面码的码距 3 4
    辅助表面码的数据量子
    比特数目
    13 25
    量子门数目
    (不含纠正操作)
    19 40
    测量次数 3 15
    最大纠正次数 2 15
    下载: 导出CSV

    表 A1  图3所示的编码线路的8种输出码字

    Table A1.  Eight output codewords for the encoding circuit shown in Fig. 3

    000 001 010 011 100 101 110 111
    $|000000000000\rangle$ $|010000110011\rangle$ $|000000000101\rangle$ $|010000110110\rangle$ $|000000010010\rangle$ $|010000100001\rangle$ $|000000010111\rangle$ $|010000100100\rangle$
    $|000000001011\rangle$ $|010000111000\rangle$ $|000000001110\rangle$ $|010000111101\rangle$ $|000000011001\rangle$ $|010000101010\rangle$ $|000000011100\rangle$ $|010000101111\rangle$
    $|000010100100\rangle$ $|010010010111\rangle$ $|000010100001\rangle$ $|010010010010\rangle$ $|000010110110\rangle$ $|010010000101\rangle$ $|000010110011\rangle$ $|010010000000\rangle$
    $|000010101111\rangle$ $|010010011100\rangle$ $|000010101010\rangle$ $|010010011001\rangle$ $|000010111101\rangle$ $|010010001110\rangle$ $|000010111000\rangle$ $|010010001011\rangle$
    $|000101100011\rangle$ $|010101010000\rangle$ $|000101100110\rangle$ $|010101010101\rangle$ $|000101110001\rangle$ $|010101000010\rangle$ $|000101110100\rangle$ $|010101000111\rangle$
    $|000101101000\rangle$ $|010101011011\rangle$ $|000101101101\rangle$ $|010101011110\rangle$ $|000101111010\rangle$ $|010101001001\rangle$ $|000101111111\rangle$ $|010101001100\rangle$
    $|000111000111\rangle$ $|010111110100\rangle$ $|000111000010\rangle$ $|010111110001\rangle$ $|000111010101\rangle$ $|010111100110\rangle$ $|000111010000\rangle$ $|010111100011\rangle$
    $|000111001100\rangle$ $|010111111111\rangle$ $|000111001001\rangle$ $|010111111010\rangle$ $|000111011110\rangle$ $|010111101101\rangle$ $|000111011011\rangle$ $|010111101000\rangle$
    $|001001010000\rangle$ $|011001100011\rangle$ $|001001010101\rangle$ $|011001100110\rangle$ $|001001000010\rangle$ $|011001110001\rangle$ $|001001000111\rangle$ $|011001110100\rangle$
    $|001001011011\rangle$ $|011001101000\rangle$ $|001001011110\rangle$ $|011001101101\rangle$ $|001001001001\rangle$ $|011001111010\rangle$ $|001001001100\rangle$ $|011001111111\rangle$
    $|001011110100\rangle$ $|011011000111\rangle$ $|001011110001\rangle$ $|011011000010\rangle$ $|001011100110\rangle$ $|011011010101\rangle$ $|001011100011\rangle$ $|011011010000\rangle$
    $|001011111111\rangle$ $|011011001100\rangle$ $|001011111010\rangle$ $|011011001001\rangle$ $|001011101101\rangle$ $|011011011110\rangle$ $|001011101000\rangle$ $|011011011011\rangle$
    $|001100110011\rangle$ $|011100000000\rangle$ $|001100110110\rangle$ $|011100000101\rangle$ $|001100100001\rangle$ $|011100010010\rangle$ $|001100100100\rangle$ $|011100010111\rangle$
    $|001100111000\rangle$ $|011100001011\rangle$ $|001100111101\rangle$ $|011100001110\rangle$ $|001100101010\rangle$ $|011100011001\rangle$ $|001100101111\rangle$ $|011100011100\rangle$
    $|001110010111\rangle$ $|011110100100\rangle$ $|001110010010\rangle$ $|011110100001\rangle$ $|001110000101\rangle$ $|011110110110\rangle$ $|001110000000\rangle$ $|011110110011\rangle$
    $|001110011100\rangle$ $|011110101111\rangle$ $|001110011001\rangle$ $|011110101010\rangle$ $|001110001110\rangle$ $|011110111101\rangle$ $|001110001011\rangle$ $|011110111000\rangle$
    $|110001100011\rangle$ $|100001010000\rangle$ $|110001100110\rangle$ $|100001010101\rangle$ $|110001110001\rangle$ $|100001000010\rangle$ $|110001110100\rangle$ $|100001000111\rangle$
    $|110001101000\rangle$ $|100001011011\rangle$ $|110001101101\rangle$ $|100001011110\rangle$ $|110001111010\rangle$ $|100001001001\rangle$ $|110001111111\rangle$ $|100001001100\rangle$
    $|110011000111\rangle$ $|100011110100\rangle$ $|110011000010\rangle$ $|100011110001\rangle$ $|110011010101\rangle$ $|100011100110\rangle$ $|110011010000\rangle$ $|100011100011\rangle$
    $|110011001100\rangle$ $|100011111111\rangle$ $|110011001001\rangle$ $|100011111010\rangle$ $|110011011110\rangle$ $|100011101101\rangle$ $|110011011011\rangle$ $|100011101000\rangle$
    $|110100000000\rangle$ $|100100110011\rangle$ $|110100000101\rangle$ $|100100110110\rangle$ $|110100010010\rangle$ $|100100100001\rangle$ $|110100010111\rangle$ $|100100100100\rangle$
    $|110100001011\rangle$ $|100100111000\rangle$ $|110100001110\rangle$ $|100100111101\rangle$ $|110100011001\rangle$ $|100100101010\rangle$ $|110100011100\rangle$ $|100100101111\rangle$
    $|110110100100\rangle$ $|100110010111\rangle$ $|110110100001\rangle$ $|100110010010\rangle$ $|110110110110\rangle$ $|100110000101\rangle$ $|110110110011\rangle$ $|100110000000\rangle$
    $|110110101111\rangle$ $|100110011100\rangle$ $|110110101010\rangle$ $|100110011001\rangle$ $|110110111101\rangle$ $|100110001110\rangle$ $|110110111000\rangle$ $|100110001011\rangle$
    $|111000110011\rangle$ $|101000000000\rangle$ $|111000110110\rangle$ $|101000000101\rangle$ $|111000100001\rangle$ $|101000010010\rangle$ $|111000100100\rangle$ $|101000010111\rangle$
    $|111000111000\rangle$ $|101000001011\rangle$ $|111000111101\rangle$ $|101000001110\rangle$ $|111000101010\rangle$ $|101000011001\rangle$ $|111000101111\rangle$ $|101000011100\rangle$
    $|111010010111\rangle$ $|101010100100\rangle$ $|111010010010\rangle$ $|101010100001\rangle$ $|111010000101\rangle$ $|101010110110\rangle$ $|111010000000\rangle$ $|101010110011\rangle$
    $|111010011100\rangle$ $|101010101111\rangle$ $|111010011001\rangle$ $|101010101010\rangle$ $|111010001110\rangle$ $|101010111101\rangle$ $|111010001011\rangle$ $|101010111000\rangle$
    $|111101010000\rangle$ $|101101100011\rangle$ $|111101010101\rangle$ $|101101100110\rangle$ $|111101000010\rangle$ $|101101110001\rangle$ $|111101000111\rangle$ $|101101110100\rangle$
    $|111101011011\rangle$ $|101101101000\rangle$ $|111101011110\rangle$ $|101101101101\rangle$ $|111101001001\rangle$ $|101101111010\rangle$ $|111101001100\rangle$ $|101101111111\rangle$
    $|111111110100\rangle$ $|101111000111\rangle$ $|111111110001\rangle$ $|101111000010\rangle$ $|111111100110\rangle$ $|101111010101\rangle$ $|111111100011\rangle$ $|101111010000\rangle$
    $|111111111111\rangle$ $|101111001100\rangle$ $|111111111010\rangle$ $|101111001001\rangle$ $|111111101101\rangle$ $|101111011110\rangle$ $|111111101000\rangle$ $|101111011011\rangle$
    下载: 导出CSV
  • [1]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [2]

    Shor P W 1999 SIREV 41 303Google Scholar

    [3]

    Preskill J 2012 arXiv: 1203.5813v3 [quant-ph

    [4]

    张诗豪, 张向东, 李绿周 2021 物理学报 70 210301Google Scholar

    Zhang S H, Zhang X D, Li L Z 2021 Acta Phys. Sin. 70 210301Google Scholar

    [5]

    周文豪, 王耀, 翁文康, 金贤敏 2022 物理学报 71 240302Google Scholar

    Zhou W H, Wang Y, Weng W K, Jin X M 2022 Acta Phys. Sin. 71 240302Google Scholar

    [6]

    宋克慧 2005 物理学报 54 4730Google Scholar

    Song K H 2005 Acta Phys. Sin. 54 4730Google Scholar

    [7]

    Grover L 1996 Proc. 28th ACM Symp. Theo. Comp. 212

    [8]

    范桁 2023 物理学报 72 070303Google Scholar

    Fan H 2023 Acta Phys. Sin. 72 070303Google Scholar

    [9]

    Shor P W 1995 Phys. Rev. A 52 2493Google Scholar

    [10]

    Steane A M 1996 Phys. Rev. Lett. 77 793Google Scholar

    [11]

    Frank A, Kunal A, Ryan B, et al. 2019 Nature 574 505Google Scholar

    [12]

    Davide C 2023 Nature 618 656

    [13]

    Deng Y H, Gu Y C, Liu H L, Gong S Q, Su H, Zhang Z J, Tang H Y, Jia M H, Xu J M, Chen M C, Qin J, Peng L C, Yan J R, Hu Y, Huang J, Li H, Li Y X, Chen Y J, Jiang X, Gan L, Yang G W, You L X, Li L, Zhong H S, Wang H, Liu N L, Renema J J, Lu C Y, Pan J W 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [14]

    Huang J S, Chen X J, Li X D, Wang J W 2023 AAPPS Bull. 14 33

    [15]

    Fowler A G, Mariantoni M, Martinis J M, Cleland A N 2012 Phys. Rev. A 86 032324Google Scholar

    [16]

    Horsman C, Fowler A G, Devitt S, van Meter R 2012 New J. Phys. 14 123011Google Scholar

    [17]

    Kitaev A Y 1997 Quantum Communication, Computing, and Measurement (New York: Plenum Press) pp181–188

    [18]

    Kitaev A Y 1997 Russ. Math. Surv. 52 1191Google Scholar

    [19]

    Kitaev A Y 2003 Ann. Phys. 303 2Google Scholar

    [20]

    Bravyi S B, Kitaev A Y 1998 arXiv: 9811052 v1 [quant-ph

    [21]

    Freedman M H, Meyer D A 2001 Found Comput. Math. 1 325Google Scholar

    [22]

    Wang C Y, Harrington J, Preskill J 2003 Ann. Phys. 303 31Google Scholar

    [23]

    Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar

    [24]

    邢莉娟, 李卓, 白宝明, 王新梅 2008 物理学报 57 4695Google Scholar

    Xing L J, Li Z, Bai B M, Wang X M 2008 Acta Phys. Sin. 57 4695Google Scholar

    [25]

    Fowler A G, Stephens A M, Groszkowski P 2009 Phys. Rev. A 80 052312Google Scholar

    [26]

    DiVincenzo D P 2009 Phys. Scr. 137 014020

    [27]

    Tomita Y, Svore K M 2014 Phys. Rev. A 90 062320Google Scholar

    [28]

    Brown B J, Laubscher K, Kesselring M S, Wootton J R 2017 Phys. Rev. X 7 021029Google Scholar

    [29]

    Litinski D, von Oppen F 2018 Quantum 2 62Google Scholar

    [30]

    Krylov G, Lukac M 2018 arXiv: 1809.11134v1 [quant-ph

    [31]

    Beaudrap de N, Horsman D 2020 Quantum 4 218Google Scholar

    [32]

    Camps D, van Beeumen R 2020 Phys. Rev. A 102 052411Google Scholar

    [33]

    Shirakawa T, Ueda H, Yunoki S 2021 arXiv: 2112.14524v1 [quant-ph

    [34]

    Wang H W, Xue Y J, Ma Y L, Hua N, Ma H Y 2022 Chin. Phys. B 31 010303Google Scholar

    [35]

    Marques J F, Varbanov B M, Moreira M S, Ali H, Muthusubramanian N, Zachariadis C, Battistel F, Beekman M, Haider N, Vlothuizen W, Bruno A, Terhal B M, DiCarlo L 2022 Nat. Phys. 18 80Google Scholar

    [36]

    Kumari K, Rajpoot G, Ranjan Jain S 2022 arXiv: 2211. 12695v4 [quant-ph

    [37]

    Chen P H, Yan B W, Cui S X 2022 arXiv: 2210.01682v2 [cond-mat.str-el

    [38]

    Chen X B, Zhao L Y, Xu G, Pan X B, Chen S Y, Cheng Z W, Yang Y X 2022 Chin. Phys. B 31 040305Google Scholar

    [39]

    Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X, Wang S M 2022 Quantum Eng. 2022 9

    [40]

    Ding L, Wang H W, Wang Y N, Wang S M 2022 Quantum Eng. 2022 8

    [41]

    Siegel A, Strikis A, Flatters T, Benjamin S 2023 Quantum 7 1065Google Scholar

    [42]

    Quan D X, Liu C S, Lü X J, Pei C X 2022 Entropy 24 1107Google Scholar

  • [1] 豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文. 一种基于异质多铁结构全局应变时钟的纳磁体择多逻辑门. 物理学报, 2023, 72(15): 157501. doi: 10.7498/aps.72.20230866
    [2] 刘腾, 陆鹏飞, 胡碧莹, 吴昊, 劳祺峰, 边纪, 刘泱, 朱峰, 罗乐. 离子阱中以声子为媒介的多体量子纠缠与逻辑门. 物理学报, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [3] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [4] 刘嘉豪, 杨晓阔, 危波, 李成, 张明亮, 李闯, 董丹娜. 基于倾斜纳磁体翻转倾向性的与(或)逻辑门应力模型. 物理学报, 2019, 68(1): 017501. doi: 10.7498/aps.68.20181621
    [5] 张茜, 李萌, 龚旗煌, 李焱. 飞秒激光直写光量子逻辑门. 物理学报, 2019, 68(10): 104205. doi: 10.7498/aps.68.20190024
    [6] 王殿伟, 韩鹏飞, 范九伦, 刘颖, 许志杰, 王晶. 基于光照-反射成像模型和形态学操作的多谱段图像增强算法. 物理学报, 2018, 67(21): 210701. doi: 10.7498/aps.67.20181288
    [7] 危波, 蔡理, 杨晓阔, 李成. 基于多铁纳磁体的择多逻辑门三维磁化动态特性研究. 物理学报, 2017, 66(21): 217501. doi: 10.7498/aps.66.217501
    [8] 颜森林. 激光混沌并联同步及其在全光逻辑门中的应用研究. 物理学报, 2013, 62(23): 230504. doi: 10.7498/aps.62.230504
    [9] 靳晓琴, 许勇, 张慧清. 非高斯噪声驱动下一维双稳系统的逻辑操作. 物理学报, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [10] 王文睿, 于晋龙, 韩丙辰, 郭精忠, 罗俊, 王菊, 刘毅, 杨恩泽. 基于高非线性光纤中非线性偏振旋转效应的全光逻辑门研究. 物理学报, 2012, 61(8): 084214. doi: 10.7498/aps.61.084214
    [11] 颜森林. 激光混沌耦合反馈光电及全光逻辑门研究. 物理学报, 2011, 60(5): 050509. doi: 10.7498/aps.60.050509
    [12] 卢道明. 腔外原子操作控制腔内原子的纠缠特性. 物理学报, 2010, 59(12): 8359-8364. doi: 10.7498/aps.59.8359
    [13] 张国锋, 邢钊. 基于非均匀外场的双量子比特自旋XYZ模型的swap门操作. 物理学报, 2010, 59(3): 1468-1472. doi: 10.7498/aps.59.1468
    [14] 陈立冰, 谭鹏, 董少光, 路洪. 利用二粒子部分纠缠态实现开靶目标的非局域量子可控非(CNOT)门的受控操作. 物理学报, 2009, 58(10): 6772-6778. doi: 10.7498/aps.58.6772
    [15] 董建绩, 张新亮, 王 阳, 黄德修. 基于单个半导体光放大器的高速多功能逻辑门. 物理学报, 2008, 57(4): 2222-2228. doi: 10.7498/aps.57.2222
    [16] 李燕明, 陈理想, 佘卫龙. 光致异构全光逻辑门理论与实验研究. 物理学报, 2007, 56(10): 5895-5902. doi: 10.7498/aps.56.5895
    [17] 郭 旗, 张霞萍, 胡 巍, 寿 倩. 基于强非局域空间光孤子特性的光子开关和光子逻辑门. 物理学报, 2006, 55(4): 1832-1839. doi: 10.7498/aps.55.1832
    [18] 陈明伦, 王顺金. 用激光-二能级原子系统实现一位通用量子逻辑门. 物理学报, 2006, 55(9): 4638-4641. doi: 10.7498/aps.55.4638
    [19] 严晓波, 王顺金. 由各向异性海森伯自旋环链组成的量子位及其通用量子逻辑门. 物理学报, 2006, 55(4): 1591-1595. doi: 10.7498/aps.55.1591
    [20] 冯晓强, 侯 洵, 杨文正, 杨 青, 陈 烽. 基于细菌视紫红质光子逻辑门的实验研究. 物理学报, 2003, 52(11): 2803-2806. doi: 10.7498/aps.52.2803
计量
  • 文章访问数:  2767
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-14
  • 修回日期:  2023-11-21
  • 上网日期:  2023-12-22
  • 刊出日期:  2024-02-20

/

返回文章
返回