搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Rényi-α熵的参数化纠缠度量

戴伟鹏 贺衎 侯晋川

引用本文:
Citation:

基于Rényi-α熵的参数化纠缠度量

戴伟鹏, 贺衎, 侯晋川

Parameterized entanglement measures based on Rényi-α entropy

Dai Wei-Peng, He Kan, Hou Jin-Chuan
PDF
HTML
导出引用
  • 与各种非参数化纠缠度量相比, 参数化纠缠度量显示了其优越性. 并发纠缠被广泛用于描述量子实验中的纠缠. 作为一种纠缠度量, 它与特定Rényi-α熵有关. 本文提出了一种基于Rényi-α熵的参数化两体纠缠度量, 命名为α-对数并发纠缠. 与现有的参数化度量不同, 首先定义了纯态的度量, 然后推广到混合态. 进一步验证了α-对数并发纠缠满足纠缠度量3个条件. 展示了对纯态的度量是容易计算的, 然而对于混合态, 解析计算只适用于特殊的双量子位态或特殊的高维混合态. 因此, 本文致力于建立一般两体态α-对数并发纠缠的一个下界. 令人惊讶的是, 这个下界是这个混合态的正部分转置判据和重排判据的函数. 这表明了3种纠缠度量之间的联系. 有趣的是, 下界依赖于与具体态相关的熵参数. 这样我们可以选择适当的参数α, 使得$ G_\alpha({\boldsymbol{\rho}})\gg0$用于特定态 ρ 的实验纠缠检测. 此外, 计算了isotropic态的α-对数并发纠缠的表达式, 并给出了$ d=2$时isotropic态的解析表达式. 最后, 讨论了α-对数并发纠缠的的单配性. 建立了两个量子比特系统中并发纠缠和α-对数并发纠缠之间的函数关系, 然后得到了该函数的一些有用性质, 并结合Coffman-Kundu-Wootters (CKW)不等式, 建立了关于α-对数并发纠缠的单配性不等式. 最终证明了单配性不等式对于α-对数并发纠缠是成立的.
    Parameterized entanglement measures have demonstrated their superiority compared with kinds of unparameterized entanglement measures. Entanglement concurrence has been widely used to describe entanglement in quantum experiments. As an entanglement measure it is related to specific quantum Rényi-α entropy. In the work, we propose a parameterized bipartite entanglement measure based on the general Rényi-α entropy, which is named α-logarithmic concurrence. This measure, different from existing parameterized measures, is defined first for pure states, then extended to the mixed states. Furthermore, we verify three necessary conditions for α-logarithmic concurrence to satisfy the entanglement measures. We show that this measure is easy to calculate for pure states. However, for mixed states, analytical calculations are only suitable for special two-qubit states or special higher-dimensional mixed states. Therefore, we devote our efforts to developing the analytical lower bound of the-logarithmic concurrence for general bipartite states. Surprisingly, this lower bound is a function on positive partial transposition criterion and realignment criterion of this mixed state. This shows the connection among the three entanglement measures. The interesting feature is that the lower bound depends on the entropy parameter associated with the detailed state. This allows us to choose appropriate parameter α such that $ G_\alpha({\boldsymbol{\rho}})\gg0$ for experimental entanglement detection of specific state ρ. Moreover, we calculate expressions of the α-logarithmic concurrence for isotropic states, and give a the analytic expressions for isotropic states with $ d = 2$. Finally, the monogamy of the α-logarithmic concurrence is also discussed. We set up a mathematical formulation for the monogamous property in terms of α-logarithmic concurrence. Here we set up the functional relation between concurrence and α-logarithmic concurrence in two qubit systems. Then we obtain some useful properties of this function, and by combining the Coffman–Kundu–Wootters (CKW) inequality, we establish the monogamy inequality about α-logarithmic concurrence. We finally prove that the monogamy inequality holds true for α-logarithmic concurrence.
      通信作者: 贺衎, hekanquantum@163.com
    • 基金项目: 国家自然科学基金(批准号: 12271394, 12071336)资助的课题.
      Corresponding author: He Kan, hekanquantum@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12271394, 12071336).
    [1]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [2]

    Bennett C H, Brassard G, Crepeau G, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [6]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1Google Scholar

    [7]

    Horodecki M, Horodecki P 1996 Phys. Rev. A 59 4206

    [8]

    Rudolph O 2005 Quantum Inf. Process. 4 219Google Scholar

    [9]

    Chen K, Wu L A 2003 Quantum Inf. Comput. 3 193Google Scholar

    [10]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022Google Scholar

    [11]

    Rungta P, Buzek V, Caves C M 2001 Phys. Rev. A 64 042315Google Scholar

    [12]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [13]

    Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998 Phys. Rev. A 58 883Google Scholar

    [14]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [15]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824Google Scholar

    [16]

    Horodecki M 2001 Quantum Inf. Comput. 1 3Google Scholar

    [17]

    Gour G, Bandyopadhyay S, Sanders B C 2007 J. Math. Phys. 48 012108Google Scholar

    [18]

    Kim J S, Sanders B C 2010 J. Phys. A 43 445305Google Scholar

    [19]

    Kim J S 2010 Phys. Rev. A 81 062328Google Scholar

    [20]

    Simon C, Kempe J 2002 Phys. Rev. A 65 052327Google Scholar

    [21]

    Yang X, Luo M X, Yang Y H, Fei S M 2021 Phys. Rev. A 103 052423Google Scholar

    [22]

    Wei Z W, Luo M X, Yang Y H, Fei S M 2022 Quantum Inf. Process. 21 210Google Scholar

    [23]

    Wei Z W, Fei S M 2022 J. Phys. A: Math. Theor. 55 275303Google Scholar

    [24]

    Lee S, Chi D P, Oh S D, Kim J 2003 Phys. Rev. A 68 062304Google Scholar

    [25]

    Rungta P, Caves C M 2003 Phys. Rev. A 67 012307Google Scholar

    [26]

    Vollbrecht K G H, Werner R F 2001 Phys. Rev. A 64 062307Google Scholar

    [27]

    Terhal B M, Vollbrecht K G H 2000 Phys. Rev. Lett. 85 2625Google Scholar

    [28]

    Buchholz L E, Moroder T, Guhne O 2016 Ann. Phys. 528 278Google Scholar

    [29]

    Chen K, Albeverio S, Fei S M 2005 Phys. Rev. Lett. 95 210501Google Scholar

    [30]

    Chen K, Sergio A, Fei S M 2005 Phys. Rev. Lett. 95 040504Google Scholar

    [31]

    Liu L G, Tian C L, Chen P X, Yuan N C 2009 Chin. Phys. Lett. 26 060306Google Scholar

    [32]

    Li M, Wang J, Shen S Q, Chen Z H, Fei S M 2018 Sci. Rep. 7 17274

    [33]

    Gour G, Sanders B C 2004 Phys. Rev. Lett. 93 260501Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Ed.) (Cambridge: Cambridge University Press) pp109–111

    [35]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275Google Scholar

    [36]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619Google Scholar

    [37]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [38]

    Mintert F, Carvalho A, Kus M, Buchleitner A 2005 Phys. Rep. 415 207Google Scholar

    [39]

    Ando T 1989 Linear Algebr. Appl. 118 163Google Scholar

    [40]

    Bhatia R 1997 Matrix Analysis (New York: Springer-Verlag) pp40–47

    [41]

    Manne K K, Caves C M 2008 Quantum Inf. Comput. 8 295Google Scholar

    [42]

    Wang Y X, Mu L Z, Vedral V, Fan H 2016 Phys. Rev. A 93 022324Google Scholar

  • [1]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [2]

    Bennett C H, Brassard G, Crepeau G, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    Hillery M, Buzek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Peres A 1996 Phys. Rev. Lett. 77 1413Google Scholar

    [6]

    Horodecki M, Horodecki P, Horodecki R 1996 Phys. Lett. A 223 1Google Scholar

    [7]

    Horodecki M, Horodecki P 1996 Phys. Rev. A 59 4206

    [8]

    Rudolph O 2005 Quantum Inf. Process. 4 219Google Scholar

    [9]

    Chen K, Wu L A 2003 Quantum Inf. Comput. 3 193Google Scholar

    [10]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022Google Scholar

    [11]

    Rungta P, Buzek V, Caves C M 2001 Phys. Rev. A 64 042315Google Scholar

    [12]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245Google Scholar

    [13]

    Zyczkowski K, Horodecki P, Sanpera A, Lewenstein M 1998 Phys. Rev. A 58 883Google Scholar

    [14]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314Google Scholar

    [15]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824Google Scholar

    [16]

    Horodecki M 2001 Quantum Inf. Comput. 1 3Google Scholar

    [17]

    Gour G, Bandyopadhyay S, Sanders B C 2007 J. Math. Phys. 48 012108Google Scholar

    [18]

    Kim J S, Sanders B C 2010 J. Phys. A 43 445305Google Scholar

    [19]

    Kim J S 2010 Phys. Rev. A 81 062328Google Scholar

    [20]

    Simon C, Kempe J 2002 Phys. Rev. A 65 052327Google Scholar

    [21]

    Yang X, Luo M X, Yang Y H, Fei S M 2021 Phys. Rev. A 103 052423Google Scholar

    [22]

    Wei Z W, Luo M X, Yang Y H, Fei S M 2022 Quantum Inf. Process. 21 210Google Scholar

    [23]

    Wei Z W, Fei S M 2022 J. Phys. A: Math. Theor. 55 275303Google Scholar

    [24]

    Lee S, Chi D P, Oh S D, Kim J 2003 Phys. Rev. A 68 062304Google Scholar

    [25]

    Rungta P, Caves C M 2003 Phys. Rev. A 67 012307Google Scholar

    [26]

    Vollbrecht K G H, Werner R F 2001 Phys. Rev. A 64 062307Google Scholar

    [27]

    Terhal B M, Vollbrecht K G H 2000 Phys. Rev. Lett. 85 2625Google Scholar

    [28]

    Buchholz L E, Moroder T, Guhne O 2016 Ann. Phys. 528 278Google Scholar

    [29]

    Chen K, Albeverio S, Fei S M 2005 Phys. Rev. Lett. 95 210501Google Scholar

    [30]

    Chen K, Sergio A, Fei S M 2005 Phys. Rev. Lett. 95 040504Google Scholar

    [31]

    Liu L G, Tian C L, Chen P X, Yuan N C 2009 Chin. Phys. Lett. 26 060306Google Scholar

    [32]

    Li M, Wang J, Shen S Q, Chen Z H, Fei S M 2018 Sci. Rep. 7 17274

    [33]

    Gour G, Sanders B C 2004 Phys. Rev. Lett. 93 260501Google Scholar

    [34]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (10th Ed.) (Cambridge: Cambridge University Press) pp109–111

    [35]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275Google Scholar

    [36]

    Vedral V, Plenio M B 1998 Phys. Rev. A 57 1619Google Scholar

    [37]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [38]

    Mintert F, Carvalho A, Kus M, Buchleitner A 2005 Phys. Rep. 415 207Google Scholar

    [39]

    Ando T 1989 Linear Algebr. Appl. 118 163Google Scholar

    [40]

    Bhatia R 1997 Matrix Analysis (New York: Springer-Verlag) pp40–47

    [41]

    Manne K K, Caves C M 2008 Quantum Inf. Comput. 8 295Google Scholar

    [42]

    Wang Y X, Mu L Z, Vedral V, Fan H 2016 Phys. Rev. A 93 022324Google Scholar

  • [1] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [2] 邵士亮, 王挺, 宋纯贺, 崔婀娜, 赵海, 姚辰. 一种新的心率变异性度量方法. 物理学报, 2019, 68(17): 178701. doi: 10.7498/aps.68.20190372
    [3] 王凯莉, 邬春学, 艾均, 苏湛. 基于多阶邻居壳数的向量中心性度量方法. 物理学报, 2019, 68(19): 196402. doi: 10.7498/aps.68.20190662
    [4] 朱浩男, 吴德伟, 李响, 王湘林, 苗强, 方冠. 基于纠缠见证的路径纠缠微波检测方法. 物理学报, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [5] 宗晓岚, 杨名. 多粒子纠缠的保护方案. 物理学报, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [6] 韩华, 刘婉璐, 吴翎燕. 基于模体的复杂网络测度量研究. 物理学报, 2013, 62(16): 168904. doi: 10.7498/aps.62.168904
    [7] 闫靓, 陈克安, Ruedi Stoop. 主观评价实验中声音样本剂量值的度量方法. 物理学报, 2013, 62(12): 124302. doi: 10.7498/aps.62.124302
    [8] 刘其功, 计新. 相位阻尼通道下初始纠缠对纠缠演化的影响. 物理学报, 2012, 61(23): 230303. doi: 10.7498/aps.61.230303
    [9] 胡要花. 运动原子多光子J-C模型中的熵交换与纠缠. 物理学报, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [10] 霍雅静, 李军刚. 利用因式化纠缠模拟纠缠动力学行为的有效性研究. 物理学报, 2012, 61(21): 210304. doi: 10.7498/aps.61.210304
    [11] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [12] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [13] 刘小娟, 赵明卓, 刘一曼, 周并举, 彭朝晖. 运动原子与光场依赖强度纠缠下最佳熵压缩态的制备和控制. 物理学报, 2010, 59(5): 3227-3235. doi: 10.7498/aps.59.3227
    [14] 许元男, 赵远, 刘丽萍, 张宇, 孙秀冬. 基于伪Wigner-Ville分布和Rényi熵的显著图目标检测. 物理学报, 2010, 59(2): 980-988. doi: 10.7498/aps.59.980
    [15] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [16] 黄春佳, 贺慧勇, 周 明, 方家元, 黄祖洪. 光场与纠缠双原子相互作用过程中的熵演化特性. 物理学报, 2006, 55(4): 1764-1768. doi: 10.7498/aps.55.1764
    [17] 刘成周, 赵 峥. Gibbons-Maeda dilaton 黑洞的纠缠熵. 物理学报, 2006, 55(4): 1607-1615. doi: 10.7498/aps.55.1607
    [18] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [19] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [20] 王友琴, 陈式刚. 一维映象中混沌区的度量性质. 物理学报, 1984, 33(3): 341-351. doi: 10.7498/aps.33.341
计量
  • 文章访问数:  852
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-15
  • 修回日期:  2023-11-01
  • 上网日期:  2023-11-16
  • 刊出日期:  2024-02-20

/

返回文章
返回