Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Miniaturized superconducting single-photon detection system for airborne platform

He Guang-Long Xue Li Wu Cheng Li Hui Yin Rui Dong Da-Xing Wang Hao Xu Chi Huang Hui-Xin Tu Xue-Cou Kang Lin Jia Xiao-Qing Zhao Qing-Yuan Chen Jian Xia Ling-Hao Zhang La-Bao Wu Pei-Heng

Citation:

Miniaturized superconducting single-photon detection system for airborne platform

He Guang-Long, Xue Li, Wu Cheng, Li Hui, Yin Rui, Dong Da-Xing, Wang Hao, Xu Chi, Huang Hui-Xin, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Xia Ling-Hao, Zhang La-Bao, Wu Pei-Heng
PDF
HTML
Get Citation
  • Facing the demand for applications such as wide-area terrain mapping and space-based atmospheric measurements, there is an urgent need to develop miniaturized single-photon detection systems with low power consumption that can be adapted to airborne platforms. Superconducting nanowire single-photon detectors (SNSPDs) have been applied to quantum information, bioimaging, deep space communication and long-range lidar with the advantages of high quantum efficiency, low dark count rate and fast detection rate. However, traditional SNSPD usually operates at 2.1 K or even lower, and the required cryogenic systems are large in size and weight, which are not easy to apply to airborne platforms. Up to now, there has been no report on SNSPD applied to airborne platforms. How to apply SNSPD to airborne platforms is an urgent problem to be solved.In this work, we design and make an SNSPD with an operating temperature of 4.2 K. The superconducting detector chip is a four-channel photon-number-resolving device with a photosensitive area of 60 μm × 60 μm, which is coupled to a 200-μm-diameter fiber by a beam compression system with a quantum efficiency of 50% at 1064 nm and a temperature of 4.2 K. Finally, the time characteristics of a single channel are tested in response to different photon numbers. The timing jitter of four-photon response is smallest, and the half-height width is 110 ps. This work not only supports airborne applications, but also has positive implications for promoting the development of general-purpose miniaturized SNSPD systems and their applications.
      Corresponding author: Xia Ling-Hao, xlh2006@163.com ; Zhang La-Bao, lzhang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033002, 62101240, 62071218, 62071214, 61801206, 11227904, 62288101), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B030302001), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK202010177).
    [1]

    Henriksson M, Jonsson P 2018 Opt. Eng. 57 093104

    [2]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar

    [3]

    Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys. Rev. Lett. 123 203601Google Scholar

    [4]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [5]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [6]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [7]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [8]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [9]

    Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4 1534Google Scholar

    [10]

    Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nat. Photonics 2 302Google Scholar

    [11]

    Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt. Express 24 9067Google Scholar

    [12]

    Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat. Nanotechnol. 13 596Google Scholar

    [13]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar

    [14]

    Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Opt. Lasers in Eng. 156 107102Google Scholar

    [15]

    Borst J W, A Visser 2010 Meas. Sci. Technol. 21 102002Google Scholar

    [16]

    Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett. 99 181110Google Scholar

    [17]

    Korner C 2007 Trends Ecol. Evol. 22 569Google Scholar

    [18]

    Pobell F 2007 Matter and Methods at Low Temperature (Verlag, Berlin, Heidelberg: Springer)

    [19]

    Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett. 112 061103Google Scholar

    [20]

    Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar

    [21]

    Kuzanyan A A, Nikoghosyan V R, Kuzanyan A S 2017 Proc. SPIE 10229 102290P

    [22]

    Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Conference on Lasers and Electro-Optics October 26, 2017, San Jose, CA, USA p1

    [23]

    Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 J. Phy.: Conf. Ser. 1559 012014Google Scholar

    [24]

    Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt. Express 27 24601Google Scholar

    [25]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792Google Scholar

    [26]

    Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Supercond. Sci. Technol. 30 11LT01Google Scholar

    [27]

    Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar

    [28]

    Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano lett. 11 2048Google Scholar

    [29]

    Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar

    [30]

    Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar

  • 图 1  四通道16像元SNSPD制备流程

    Figure 1.  Four-channel 16-pixel SNSPD preparation process.

    图 2  纳米线扫描电子显微镜图: 总面积为60 μm × 60 μm, 共四个通道, 每个通道包括4个像元(①②③④). 红色圆虚线表示入射光斑大小, 直径为60 μm. 绿色线框表示1号通道左、中、右3个位置处的纳米线, 线宽为65 nm ± 2 nm, 分布较为均匀

    Figure 2.  Scanning electron microscopy of nanowires: total area is 60 μm × 60 μm, four channels, each channel includes four pixels (①②③④). The red dotted line is the size of the incident light spot, with a diameter of 60 μm. The green line frame is the nanowire at the left, middle and right of Channel 1, with a line width of 65 nm ± 2 nm and relatively uniform distribution.

    图 3  器件性能测试 (a) 器件在不同温度下的量子效率, 在温度小于3.5 K时四通道量子效率均达饱和, 但饱和区间长度随着温度上升而减小, 当温度升至4.2 K时, 通过对实验结果的拟合, 得到4个通道的量子效率均大于50%; (b) 光子响应幅值分布统计, 呈现4个高斯分布, 统计分布的中心值分别为56 , 72, 87, 98 mV, 分别对应单光子、双光子、三光子和四光子响应情况; (c) 通过示波器采集不同光子数响应的脉冲信号, 单光子响应时的信噪比为56 mV/20 mV ≈ 2.8

    Figure 3.  Device performance test: (a) Quantum efficiency test of the device at different temperatures. The quantum efficiency of all four channels saturates at temperatures less than 3.5 K, but the length of the saturation interval decreases as the temperature rises. When the temperature rises to 4.2 K, the quantum efficiency of the four channels is obtained by fitting the experimental results, which is greater than 50%; (b) the statistics of photon response amplitude distribution, showing four Gaussian distributions with the center values of statistical distributions of 56 , 72 , 87 and 98 mV, corresponding to the single-photon, two-photon, three-photon and four-photon response cases, respectively; (c) the acquisition of different photon number response by oscilloscope, and the signal-to-noise ratio of single photon response is 56 mV/20 mV ≈ 2.8.

    图 4  时间特性测试 (a) 单光子响应模式下时间抖动测量; 由于器件单通道包含了4个像元, 不同像元之间信号传输线的长度不同, 导致信号传输时间不同, 在时间轴上表现为4个高斯分布的叠加; (b) 多光子响应时时间抖动测量; 由于存在双光子、三光子和四光子响应多种状态, 在时间轴上无明显的分布特征; (c) 四光子响应时间抖动测量; 只存在4个像元同时响应的情况, 因此只有一个高斯分布, 此时抖动最小, 高斯分布半高宽110 ps

    Figure 4.  Time characteristic test: (a) Timing jitter measurement in single-photon response mode. Because the single channel of the device contains four pixels, the length of signal transmission lines between different pixels is different, resulting in different signal transmission time, which is shown as the superposition of four Gaussian distributions on the time axis. (b) Measurement of timing jitter in multi-photon response. Due to the existence of two-photon, three-photon and four-photon response states, there is no obvious distribution characteristics on the time axis. (c) Four-photon response timing jitter measurement. Only four pixels respond at the same time, so there is only one Gaussian distribution. At this time, the jitter is minimum, and the half-height width of the Gaussian distribution is 110 ps.

    表 1  液氦温区SNSPD国内外研究进展

    Table 1.  Progress of domestic and international research on SNSPD in liquid helium temperature region.

    年份薄膜材料波段/nm探测器直径、线长或面积运行温度/K效率
    2020年[23]NbTiN1064直径15 μm4.2
    2019年[24]NbTiN1550直径14 μm4.264%
    2017年[25]MoSi370直径56 μm480%
    2017年[26]NbTiN1310直径12 μm4.220%
    2017年[22]MgB21550线长120 μm11
    This workNbN106460 μm× 60 μm3.5量子效率饱和
    DownLoad: CSV
  • [1]

    Henriksson M, Jonsson P 2018 Opt. Eng. 57 093104

    [2]

    Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar

    [3]

    Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys. Rev. Lett. 123 203601Google Scholar

    [4]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar

    [5]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [6]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [7]

    Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar

    [8]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar

    [9]

    Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4 1534Google Scholar

    [10]

    Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nat. Photonics 2 302Google Scholar

    [11]

    Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt. Express 24 9067Google Scholar

    [12]

    Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat. Nanotechnol. 13 596Google Scholar

    [13]

    Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar

    [14]

    Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Opt. Lasers in Eng. 156 107102Google Scholar

    [15]

    Borst J W, A Visser 2010 Meas. Sci. Technol. 21 102002Google Scholar

    [16]

    Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett. 99 181110Google Scholar

    [17]

    Korner C 2007 Trends Ecol. Evol. 22 569Google Scholar

    [18]

    Pobell F 2007 Matter and Methods at Low Temperature (Verlag, Berlin, Heidelberg: Springer)

    [19]

    Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett. 112 061103Google Scholar

    [20]

    Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar

    [21]

    Kuzanyan A A, Nikoghosyan V R, Kuzanyan A S 2017 Proc. SPIE 10229 102290P

    [22]

    Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Conference on Lasers and Electro-Optics October 26, 2017, San Jose, CA, USA p1

    [23]

    Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 J. Phy.: Conf. Ser. 1559 012014Google Scholar

    [24]

    Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt. Express 27 24601Google Scholar

    [25]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792Google Scholar

    [26]

    Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Supercond. Sci. Technol. 30 11LT01Google Scholar

    [27]

    Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar

    [28]

    Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano lett. 11 2048Google Scholar

    [29]

    Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar

    [30]

    Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Chen Zhi-Gang, Zhang Wei-Jun, Zhang Xing-Yu, Wang Yu-Ze, Xiong Jia-Min, Hong Yi-Yu, Yuan Pu-Sheng, Wu Ling, Wang Zhen, You Li-Xing. Cryogenic DC-coupled readout electronics for high-speed superconducting nanowire single-photon detectors based on a commercial operational amplifier. Acta Physica Sinica, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] Liu Xu-Ming, Pan Chang-Zhao, Zhang Yu, Liao Yi, Guo Wei-Jie, Yu Da-Peng. 4 K GM-type pulse tube cryocooler with large cooling capacity. Acta Physica Sinica, 2023, 72(19): 190701. doi: 10.7498/aps.72.20230910
    [4] Xi Ling-Ling, Yang Xiao-Yan, Zhang Tian-Zhu, Xiao You, You Li-Xing, Li Hao. High comprehensive performance superconducting nanowire single photon detector. Acta Physica Sinica, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [5] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] Ma Lu-Yao, Zhang Xing-Yu, Shu Zhi-Yun, Xiao You, Zhang Tian-Zhu, Li Hao, You Li-Xing. Superconducting nanowire single photon detector under AC-bias with self-differential readout. Acta Physica Sinica, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [7] Zhang Xiao, Lü Jia-Yu, Guan Yan-Qiu, Li Hui, Wang Xi-Ming, Zhang La-Bao, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Wu Pei-Heng. Design and fabrication of single photon detector with ultra-large area superconducting nanowire array. Acta Physica Sinica, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [8] Huang Dian, Dai Wan-Lin, Wang Yi-Wen, He Qing, Wei Lian-Fu. Noise processing of superconducting kinetic inductance single photon detector. Acta Physica Sinica, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [9] Zhang Wen-Ying, Hu Peng, Xiao You, Li Hao, You Li-Xing. High-efficiency polarization-insensitive superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [10] Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng. Research progress of photon response mechanism of superconducting nanowire single photon detector. Acta Physica Sinica, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [11] Yan Xia-Chao, Zhu Jiang, Zhang La-Bao, Xing Qiang-Lin, Chen Ya-Jun, Zhu Hong-Quan, Li Jian-Ting, Kang Lin, Chen Jian, Wu Pei-Heng. Model of bit error rate for laser communication based on superconducting nanowire single photon detector. Acta Physica Sinica, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [12] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] Zheng Li-Xia, Wu Jin, Zhang Xiu-Chuan, Tu Jun-Hong, Sun Wei-Feng, Gao Xin-Jiang. Sensing detection and quenching method for InGaAs single-photon detector. Acta Physica Sinica, 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [14] Zhang Qing-Ya, Dong Wen-Hui, He Gen-Fang, Li Tie-Fu, Liu Jian-She, Chen Wei. Review on superconducting transition edge sensor based single photon detector. Acta Physica Sinica, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [15] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [16] Wang Hong-Pei, Wang Guang-Long, Ni Hai-Qiao, Xu Ying-Qiang, Niu Zhi-Chuan, Gao Feng-Qi. Quantum-dot gated field effect enhanced single-photon detectors. Acta Physica Sinica, 2013, 62(19): 194205. doi: 10.7498/aps.62.194205
    [17] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [18] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] Cheng Nan, Huang Gang-Feng, Wang Jin-Dong, Wei Zheng-Jun, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. Analysis of single photon detector based on the reflection of coaxial cables. Acta Physica Sinica, 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [20] Sun Zhi-Bin, Ma Hai-Qiang, Lei Ming, Yang Han-Dong, Wu Ling-An, Zhai Guang-Jie, Feng Ji. A single-photon detector in the near-infrared range. Acta Physica Sinica, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
Metrics
  • Abstract views:  4380
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  20 February 2023
  • Accepted Date:  07 March 2023
  • Available Online:  14 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回