-
Facing the demand for applications such as wide-area terrain mapping and space-based atmospheric measurements, there is an urgent need to develop miniaturized single-photon detection systems with low power consumption that can be adapted to airborne platforms. Superconducting nanowire single-photon detectors (SNSPDs) have been applied to quantum information, bioimaging, deep space communication and long-range lidar with the advantages of high quantum efficiency, low dark count rate and fast detection rate. However, traditional SNSPD usually operates at 2.1 K or even lower, and the required cryogenic systems are large in size and weight, which are not easy to apply to airborne platforms. Up to now, there has been no report on SNSPD applied to airborne platforms. How to apply SNSPD to airborne platforms is an urgent problem to be solved. In this work, we design and make an SNSPD with an operating temperature of 4.2 K. The superconducting detector chip is a four-channel photon-number-resolving device with a photosensitive area of 60 μm × 60 μm, which is coupled to a 200-μm-diameter fiber by a beam compression system with a quantum efficiency of 50% at 1064 nm and a temperature of 4.2 K. Finally, the time characteristics of a single channel are tested in response to different photon numbers. The timing jitter of four-photon response is smallest, and the half-height width is 110 ps. This work not only supports airborne applications, but also has positive implications for promoting the development of general-purpose miniaturized SNSPD systems and their applications. -
Keywords:
- superconducting nanowire single photon detector /
- liquid helium temperature zone /
- photon number resolution /
- airborne platform
[1] Henriksson M, Jonsson P 2018 Opt. Eng. 57 093104
[2] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar
[3] Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys. Rev. Lett. 123 203601Google Scholar
[4] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar
[5] Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar
[6] Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar
[7] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar
[8] Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar
[9] Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4 1534Google Scholar
[10] Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nat. Photonics 2 302Google Scholar
[11] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt. Express 24 9067Google Scholar
[12] Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat. Nanotechnol. 13 596Google Scholar
[13] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar
[14] Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Opt. Lasers in Eng. 156 107102Google Scholar
[15] Borst J W, A Visser 2010 Meas. Sci. Technol. 21 102002Google Scholar
[16] Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett. 99 181110Google Scholar
[17] Korner C 2007 Trends Ecol. Evol. 22 569Google Scholar
[18] Pobell F 2007 Matter and Methods at Low Temperature (Verlag, Berlin, Heidelberg: Springer)
[19] Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett. 112 061103Google Scholar
[20] Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar
[21] Kuzanyan A A, Nikoghosyan V R, Kuzanyan A S 2017 Proc. SPIE 10229 102290P
[22] Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Conference on Lasers and Electro-Optics October 26, 2017, San Jose, CA, USA p1
[23] Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 J. Phy.: Conf. Ser. 1559 012014Google Scholar
[24] Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt. Express 27 24601Google Scholar
[25] Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792Google Scholar
[26] Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Supercond. Sci. Technol. 30 11LT01Google Scholar
[27] Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar
[28] Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano lett. 11 2048Google Scholar
[29] Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar
[30] Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar
-
图 2 纳米线扫描电子显微镜图: 总面积为60 μm × 60 μm, 共四个通道, 每个通道包括4个像元(①②③④). 红色圆虚线表示入射光斑大小, 直径为60 μm. 绿色线框表示1号通道左、中、右3个位置处的纳米线, 线宽为65 nm ± 2 nm, 分布较为均匀
Figure 2. Scanning electron microscopy of nanowires: total area is 60 μm × 60 μm, four channels, each channel includes four pixels (①②③④). The red dotted line is the size of the incident light spot, with a diameter of 60 μm. The green line frame is the nanowire at the left, middle and right of Channel 1, with a line width of 65 nm ± 2 nm and relatively uniform distribution.
图 3 器件性能测试 (a) 器件在不同温度下的量子效率, 在温度小于3.5 K时四通道量子效率均达饱和, 但饱和区间长度随着温度上升而减小, 当温度升至4.2 K时, 通过对实验结果的拟合, 得到4个通道的量子效率均大于50%; (b) 光子响应幅值分布统计, 呈现4个高斯分布, 统计分布的中心值分别为56 , 72, 87, 98 mV, 分别对应单光子、双光子、三光子和四光子响应情况; (c) 通过示波器采集不同光子数响应的脉冲信号, 单光子响应时的信噪比为56 mV/20 mV ≈ 2.8
Figure 3. Device performance test: (a) Quantum efficiency test of the device at different temperatures. The quantum efficiency of all four channels saturates at temperatures less than 3.5 K, but the length of the saturation interval decreases as the temperature rises. When the temperature rises to 4.2 K, the quantum efficiency of the four channels is obtained by fitting the experimental results, which is greater than 50%; (b) the statistics of photon response amplitude distribution, showing four Gaussian distributions with the center values of statistical distributions of 56 , 72 , 87 and 98 mV, corresponding to the single-photon, two-photon, three-photon and four-photon response cases, respectively; (c) the acquisition of different photon number response by oscilloscope, and the signal-to-noise ratio of single photon response is 56 mV/20 mV ≈ 2.8.
图 4 时间特性测试 (a) 单光子响应模式下时间抖动测量; 由于器件单通道包含了4个像元, 不同像元之间信号传输线的长度不同, 导致信号传输时间不同, 在时间轴上表现为4个高斯分布的叠加; (b) 多光子响应时时间抖动测量; 由于存在双光子、三光子和四光子响应多种状态, 在时间轴上无明显的分布特征; (c) 四光子响应时间抖动测量; 只存在4个像元同时响应的情况, 因此只有一个高斯分布, 此时抖动最小, 高斯分布半高宽110 ps
Figure 4. Time characteristic test: (a) Timing jitter measurement in single-photon response mode. Because the single channel of the device contains four pixels, the length of signal transmission lines between different pixels is different, resulting in different signal transmission time, which is shown as the superposition of four Gaussian distributions on the time axis. (b) Measurement of timing jitter in multi-photon response. Due to the existence of two-photon, three-photon and four-photon response states, there is no obvious distribution characteristics on the time axis. (c) Four-photon response timing jitter measurement. Only four pixels respond at the same time, so there is only one Gaussian distribution. At this time, the jitter is minimum, and the half-height width of the Gaussian distribution is 110 ps.
表 1 液氦温区SNSPD国内外研究进展
Table 1. Progress of domestic and international research on SNSPD in liquid helium temperature region.
-
[1] Henriksson M, Jonsson P 2018 Opt. Eng. 57 093104
[2] Kong H J, Kim T H, Jo S E, Oh M S 2011 Opt. Express 19 19323Google Scholar
[3] Cohen L, Matekole E S, Sher Y, Istrati D, Eisenberg H S, Dowling J P 2019 Phys. Rev. Lett. 123 203601Google Scholar
[4] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114Google Scholar
[5] Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar
[6] Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar
[7] Shibata H, Shimizu K, Takesue H, Tokura Y 2015 Opt. Lett. 40 3428Google Scholar
[8] Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204Google Scholar
[9] Cahall C, Nicolich K L, Islam N T, Lafyatis G P, Miller A J, Gauthier D J, Kim J 2017 Optica 4 1534Google Scholar
[10] Divochiy A, Marsili F, Bitauld D, Gaggero A, Leoni R, Mattioli F, Korneev A, Seleznev V, Kaurova N, Minaeva O, Gol'tsman G, Lagoudakis K G, Benkhaoul M, Lévy F, Fiore A 2008 Nat. Photonics 2 302Google Scholar
[11] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Leoni R, Fiore A 2016 Opt. Express 24 9067Google Scholar
[12] Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D, Berggren K K 2018 Nat. Nanotechnol. 13 596Google Scholar
[13] Liao S K, Cai W Q, Liu W Y, Zhang L, Li Y, Ren J G, Yin J, Shen Q, Cao Y, Li Z P, Li F Z, Chen X W, Sun L H, Jia J J, Wu J C, Jiang X J, Wang J F, Huang Y M, Wang Q, Zhou Y L, Deng L, Xi T, Ma L, Hu T, Zhang Q, Chen Y A, Liu N L, Wang X B, Zhu Z C, Lu C Y, Shu R, Peng C Z, Wang J Y, Pan J W 2017 Nature 549 43Google Scholar
[14] Guan Y, Li H, Xue L, Yin R, Zhang L, Wang H, Zhu G, Kang L, Chen J, Wu P 2022 Opt. Lasers in Eng. 156 107102Google Scholar
[15] Borst J W, A Visser 2010 Meas. Sci. Technol. 21 102002Google Scholar
[16] Sprengers J P, Gaggero A, Sahin D, Jahanmirinejad S, Frucci G, Mattioli F, Leoni R, Beetz J, Lermer M, Kamp M, Hofling S, Sanjines R, Fiore A 2011 Appl. Phys. Lett. 99 181110Google Scholar
[17] Korner C 2007 Trends Ecol. Evol. 22 569Google Scholar
[18] Pobell F 2007 Matter and Methods at Low Temperature (Verlag, Berlin, Heidelberg: Springer)
[19] Caloz M, Perrenoud M, Autebert C, Korzh B, Weiss M, Schonenberger C, Warburton R J, Zbinden H, Bussieres F 2018 Appl. Phys. Lett. 112 061103Google Scholar
[20] Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J, Wu P 2021 Sci. Bull. 66 965Google Scholar
[21] Kuzanyan A A, Nikoghosyan V R, Kuzanyan A S 2017 Proc. SPIE 10229 102290P
[22] Velasco A E, Cunnane D P, Frasca S, Melbourne T, Acharya N, Briggs R, Beyer A D, Shaw M D, Karasik B S, Wolak M A, Verma V B, Lita A E, Shibata H, Ohkubo M, Zen N, Ukibe M, Xi X X, Marsili F 2017 Conference on Lasers and Electro-Optics October 26, 2017, San Jose, CA, USA p1
[23] Salvoni D, Ejrnaes M, Parlato L, Yang X Y, You L X, Wang Z, Pepe G P, Cristiano R 2020 J. Phy.: Conf. Ser. 1559 012014Google Scholar
[24] Gourgues R, Los J W N, Zichi J, Chang J, Kalhor N, Bulgarini G, Dorenbos S N, Zwiller V, Zadeh I E 2019 Opt. Express 27 24601Google Scholar
[25] Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792Google Scholar
[26] Gemmell N R, Hills M, Bradshaw T, Rawlings T, Green B, Heath R M, Tsimvrakidis K, Dobrovolskiy S, Zwiller V, Dorenbos S. N, Crook M, Hadfield R H 2017 Supercond. Sci. Technol. 30 11LT01Google Scholar
[27] Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Hubers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar
[28] Marsili F, Najafi F, Dauler E, Bellei F, Hu X L, Csete M, Molnar R J, Berggren K K 2011 Nano lett. 11 2048Google Scholar
[29] Li F, Han H, Chen Q, Zhang B, Bao H, Dai Y, Ge R, Guo S, He G, Fei Y, Yang S, Wang X, Wang H, Jia X, Zhao Q, Zhang L, Kang L, Wu P 2021 Photonics Res. 9 389Google Scholar
[30] Kozorezov A G, Lambert C, Marsili F, Stevens M J, Verma V B, Allmaras J P, Shaw M D, Mirin R P, Nam S W 2017 Phys. Rev. B 96 054507Google Scholar
Catalog
Metrics
- Abstract views: 4599
- PDF Downloads: 174
- Cited By: 0