Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap

Xia Ke-Lun Guan Yong-Nian Gu Jie-Rong Jia Guang Wu Miao-Miao Shen Xiang Liu Zi-Jun

Citation:

Structural evolution of Ge20Se80–xTex glass networks and assessment of glass properties by theoretical bandgap

Xia Ke-Lun, Guan Yong-Nian, Gu Jie-Rong, Jia Guang, Wu Miao-Miao, Shen Xiang, Liu Zi-Jun
PDF
HTML
Get Citation
  • Infrared imaging systems are being updated towards greater performance as well as lighter and smaller devices. Developing infrared materials with special properties is a critical for enhancing the performance of optical systems as well as miniaturizing devices. Chalcogenide glass becomes a popular option for advanced IR materials due to its component-property tunability. Se—based glasses such as Ge33As12Se55, Ge10As40Se50, and As40Se60, which completely cover the mid- and long-wave infrared windows, are the most typical materials used in infrared equipment. However, these classical materials can no longer meet the requirements of high-performance imaging systems, and adding more elements such as Te, Ga, Sb, and Ag to enhance the performance is a reliable way to solve this problem. By analysing the structure and properties of the Ge20Se80–xTex glass system, the law of its structure and properties evolving with Te content is illustrated. The obtained typical results are shown below. With the increase of Te content, the glass transition temperature (Tg) increases and then decreases, which is caused by the network structure and the average bond energy; the density and refractive index increase in an approximately linear gradient; the Abbe number gradually increases, while the Vickers hardness hardly changes with Te content; the fracture toughness decreases with the Te content increasing. Aiming at the problem that the average coordination number is unable to evaluate the glass systems composed of two or more elements from the same main group, a theoretical bandgap-glass property evaluation system is successfully established. The functional relationships among parameters such as density, refractive index, Abbe number, and fracture toughness, and theoretical band gap are established for Ge20Se80–xTex glass system as shown in the summary figure, which can be used to rapidly evaluate the glass components and properties.
      Corresponding author: Liu Zi-Jun, liuzijun@nbu.edu.cn
    • Funds: Project supported by the Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China (Grant No. U21A2056) and the National Natural Science Foundation of China (Grant Nos. 61975086, 62075110).
    [1]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses (Sawston Cambridge: Woodhead Publishing) pxvii

    [2]

    Maurugeon S, Boussard-Pledel C, Troles J, Faber A J, Lucas P, Zhang X H, Lucas J, Bureau B 2010 J. Lightwave Technol. 28 3358

    [3]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 129Google Scholar

    [4]

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101 [米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇 2023 物理学报 72 047101]Google Scholar

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101Google Scholar

    [5]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88Google Scholar

    [6]

    Carlie N A 2015 Int. J. Appl. Glass Sci. 6 364Google Scholar

    [7]

    Lonergan J, Lonergan C, McCloy J, Richardson K A 2019 J. Non-Cryst. Solids 510 192Google Scholar

    [8]

    Yang G, Gueguen Y, Sangleboeuf J-C, Rouxel T, Boussard-Plédel C, Troles J, Lucas P, Bureau B 2013 J. Non-Cryst. Solids 377 54Google Scholar

    [9]

    Wang T, Wei W H, Shen X, Wang R P, Davies B L, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [10]

    Wang R P, Wang T, Choi D Y, Madden S, Luther-Davies B 2011 AIP Conf. Proc. 1393 34

    [11]

    Xu S W, Liang T, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [12]

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102 [许思维, 王训四, 沈祥 2024 物理学报 73 057102]Google Scholar

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102Google Scholar

    [13]

    Phillips J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [14]

    Xia F, Baccaro S, Wang H, Hua W, Zeng H D, Zhang X H, Chen G R 2008 J. Non-Cryst. Solids 354 1365Google Scholar

    [15]

    Opletal G, Wang R P, Russo S P 2013 Phys. Chem. Chem. Phys. 15 4582Google Scholar

    [16]

    Tichý L, Tichá H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [17]

    Xia F, Baccaro S, Zhao D, Falconieri M, Chen G 2005 Nucl. Instrum. Methods Phys. Res. B 234 525Google Scholar

    [18]

    Sharma E, Sharma R, Sharma V, Sharma P 2018 AIP Conf. Proc. 2050 020008

    [19]

    Zha C, Wang R, Smith A, Prasad A, Jarvis R A, Luther-Davies B 2007 J. Mater. Sci-Mater. El. 18 389Google Scholar

    [20]

    Arsova D 1996 J. Phys. Chem. Solids 57 1279Google Scholar

    [21]

    Fouad S S 1999 Vacuum 52 505Google Scholar

    [22]

    Cheng C, Wang X S, Xu T F, Sun L H, Pan Z H, Liu S, Zhu Q D, Liao F X, Nie Q H, Dai S X, Shen X H, Zhang X H, Chen W 2016 Infrared Phys. Techn. 76 698Google Scholar

    [23]

    Abd El-Rahman A A, Eid A, Sanad M, El-Ocker R 1998 J. Phys. Chem. Solids 59 825Google Scholar

    [24]

    Sharma P, Katyal S C 2008 J. Non-Cryst. Solids 354 3836Google Scholar

    [25]

    Gonçalves C, Mereau R, Nazabal V, Boussard-Pledel C, Roiland C, Furet E, Deschamps M, Bureau B, Dussauze M 2021 J. Solid State Chem. 297 122062Google Scholar

    [26]

    Hassanien A S, Sharma I, Akl A A 2020 J. Non-Cryst. Solids 531 119853Google Scholar

    [27]

    Knotek P, Kutalek P, Cernoskova E, Vlcek M, Tichy L 2020 RSC Adv. 10 42744Google Scholar

  • 图 1  (a) Ge20Se80–xTex系列玻璃直接带隙对应的(αhν)2之间的关系, 以及每种玻璃的光学带隙值; (b) 理论带隙、光学带隙与Te含量的变化关系

    Figure 1.  (a) The relationship between (αhν)2 and corresponding to the direct band gap of Ge20Se80–xTex series glasses, and the optical band gap value of each glass; (b) the relationship between the theoretical bandgap, the optical bandgap and the Te content.

    图 2  (a) Ge20Se80–xTex系列玻璃归一化拉曼光谱; (b) Ge20Se50Te30玻璃拉曼光谱曲线拟合

    Figure 2.  (a) Normalised Raman spectra of Ge20Se80–xTex series glasses; (b) Raman spectral curve fitting of Ge20Se50Te30 glasses.

    图 3  Ge20Se80–xTex系列玻璃的Tg随Te含量的变化

    Figure 3.  The relationship between the Tg of Ge20Se80–xTex series glass and the Te content.

    图 4  Ge20Se80–xTex系列玻璃的密度(a)、折射率@10 μm (b)、以及8—12 μm窗口的阿贝数 (c)与Te含量的变化关系; Ge20Se80–xTex系列玻璃的密度(d)、折射率@10 μm(e)、以及8—12 μm窗口的阿贝数(f)与理论带隙$ E_{\text{g}}^{{\text{th}}} $的变化关系及其拟合曲线

    Figure 4.  Variation of density (a), refractive index @10 μm (b), and Abbe number (c) for the 8–12 μm window versus Te content for Ge20Se80–xTex series glasses; variation of density (d), refractive index @10 μm (e), and Abbe number (f) for the 8–12 μm window versus the theoretical bandgap $ E_{\text{g}}^{{\text{th}}} $and their fitting curves for the Ge20Se80–xTex series glasses.

    图 5  Ge20Se80–xTex系列玻璃的维氏硬度(a)、断裂韧性(b)与Te含量的变化关系; Ge20Se80–xTex系列玻璃的维氏硬度(d)、断裂韧性(e)与理论带隙$ E_{\text{g}}^{{\text{th}}} $的变化关系及其拟合曲线

    Figure 5.  Variation of Vickers hardness (a) and fracture toughness (b) versus Te content for the Ge20Se80–xTex series of glasses; variation of Vickers hardness (d) and fracture toughness (e) versus the theoretical bandgap $ E_{\text{g}}^{{\text{th}}} $, and their fitted curves for the Ge20Se80–xTex series of glasses.

    表 1  Ge, Se, Te元素的基本特性参数

    Table 1.  The basic characteristic parameters of Ge, Se, and Te elements.

    元素 配位数 密度/(g·cm–3) 摩尔质量/(g·mol–1) 摩尔体积/(cm3·mol–1) 电负性Pauling scale 带隙/eV 键能/(kcal·mol–1)
    Ge 4 5.33 72.63 13.63 2.01 0.67 37.78
    Se 2 4.81 78.97 16.42 2.55 1.95 44.04
    Te 2 6.22 127.6 20.50 2.10 0.33 33.00
    DownLoad: CSV

    表 2  Ge20Se80–xTex的玻璃可能出现的共价键及其键能

    Table 2.  Possible bond types and bond energies for Ge20Se80–xTex glass.

    成键类型Ge—SeSe—TeSe—SeGe—TeTe—Te
    键能/(kcal·mol–1)49.5444.2044.0435.5533.00
    DownLoad: CSV

    表 3  Ge20Se80–xTex系列玻璃可能出现的振动模式及其频率位置

    Table 3.  Possible vibration modes and frequency positions of Ge20Se80–xTex series glasses.

    Wavenumber/cm–1 Vibrational mode
    145 ν (Te)—Te–Te—(Te)
    151 νas (Ge)—Te—Te—Te—(Ge)
    154 νs (Ge)—Te—Te—Te—(Ge)
    157 ν (Ge)—Te—Te—(Te)
    164 ν (Ge)—Te—Te—(Ge)
    145 ν Ge—Se1/2Te3/2
    160 ν Ge—Se2/2Te2/2
    170 ν Ge—Se3/2Te1/2
    194 νs Corner-Sharing Ge—Se4/2
    211 νs Edge-sharing Ge—Se4/2
    299 νas Ge—Se4/2
    208 νas (Ge)—Te—Se—Te—(Ge)
    210 ν (Se)-Se—Te—(Ge)
    211 νs (Ge)—Te—Se—Te—(Ge)
    212 νas (Ge)-Se—Te—Se—(Ge)
    219 νs (Te)—Te—Se—(Ge)
    222 νs (Ge)-Se—Te—Se—(Ge)
    245 ν -(Se—Se)n- long chain
    252 νas Se—Se—Se
    263 ν (Se)-Se—Se—(Ge)
    270 ν Se—Se
    DownLoad: CSV
  • [1]

    Adam J L, Zhang X H 2014 Chalcogenide Glasses (Sawston Cambridge: Woodhead Publishing) pxvii

    [2]

    Maurugeon S, Boussard-Pledel C, Troles J, Faber A J, Lucas P, Zhang X H, Lucas J, Bureau B 2010 J. Lightwave Technol. 28 3358

    [3]

    Calvez L, Ma H L, Lucas J, Zhang X H 2007 Adv. Mater. 19 129Google Scholar

    [4]

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101 [米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇 2023 物理学报 72 047101]Google Scholar

    Mi H T, Yang A P, Huang Z X, Tian K Z, Li Y B, Ma C, Liu Z J, Shen X, Yang Z Y 2023 Acta Phys. Sin. 72 047101Google Scholar

    [5]

    Wang Y W, Qi S S, Yang Z Y, Wang R P, Yang A P, Lucas P 2017 J. Non-Cryst. Solids 459 88Google Scholar

    [6]

    Carlie N A 2015 Int. J. Appl. Glass Sci. 6 364Google Scholar

    [7]

    Lonergan J, Lonergan C, McCloy J, Richardson K A 2019 J. Non-Cryst. Solids 510 192Google Scholar

    [8]

    Yang G, Gueguen Y, Sangleboeuf J-C, Rouxel T, Boussard-Plédel C, Troles J, Lucas P, Bureau B 2013 J. Non-Cryst. Solids 377 54Google Scholar

    [9]

    Wang T, Wei W H, Shen X, Wang R P, Davies B L, Jackson I 2013 J. Phys. D: Appl. Phys. 46 165302Google Scholar

    [10]

    Wang R P, Wang T, Choi D Y, Madden S, Luther-Davies B 2011 AIP Conf. Proc. 1393 34

    [11]

    Xu S W, Liang T, Zhu X Y 2023 Chalcogenide Lett. 20 55Google Scholar

    [12]

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102 [许思维, 王训四, 沈祥 2024 物理学报 73 057102]Google Scholar

    Xu S W, Wang X S, Shen X 2024 Acta Phys. Sin. 73 057102Google Scholar

    [13]

    Phillips J C 1979 J. Non-Cryst. Solids 34 153Google Scholar

    [14]

    Xia F, Baccaro S, Wang H, Hua W, Zeng H D, Zhang X H, Chen G R 2008 J. Non-Cryst. Solids 354 1365Google Scholar

    [15]

    Opletal G, Wang R P, Russo S P 2013 Phys. Chem. Chem. Phys. 15 4582Google Scholar

    [16]

    Tichý L, Tichá H 1995 J. Non-Cryst. Solids 189 141Google Scholar

    [17]

    Xia F, Baccaro S, Zhao D, Falconieri M, Chen G 2005 Nucl. Instrum. Methods Phys. Res. B 234 525Google Scholar

    [18]

    Sharma E, Sharma R, Sharma V, Sharma P 2018 AIP Conf. Proc. 2050 020008

    [19]

    Zha C, Wang R, Smith A, Prasad A, Jarvis R A, Luther-Davies B 2007 J. Mater. Sci-Mater. El. 18 389Google Scholar

    [20]

    Arsova D 1996 J. Phys. Chem. Solids 57 1279Google Scholar

    [21]

    Fouad S S 1999 Vacuum 52 505Google Scholar

    [22]

    Cheng C, Wang X S, Xu T F, Sun L H, Pan Z H, Liu S, Zhu Q D, Liao F X, Nie Q H, Dai S X, Shen X H, Zhang X H, Chen W 2016 Infrared Phys. Techn. 76 698Google Scholar

    [23]

    Abd El-Rahman A A, Eid A, Sanad M, El-Ocker R 1998 J. Phys. Chem. Solids 59 825Google Scholar

    [24]

    Sharma P, Katyal S C 2008 J. Non-Cryst. Solids 354 3836Google Scholar

    [25]

    Gonçalves C, Mereau R, Nazabal V, Boussard-Pledel C, Roiland C, Furet E, Deschamps M, Bureau B, Dussauze M 2021 J. Solid State Chem. 297 122062Google Scholar

    [26]

    Hassanien A S, Sharma I, Akl A A 2020 J. Non-Cryst. Solids 531 119853Google Scholar

    [27]

    Knotek P, Kutalek P, Cernoskova E, Vlcek M, Tichy L 2020 RSC Adv. 10 42744Google Scholar

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] Mi Hao-Ting, Yang An-Ping, Huang Zi-Xuan, Tian Kang-Zhen, Li Yue-Bing, Ma Cheng, Liu Zi-Jun, Shen Xiang, Yang Zhi-Yong. Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and fibers. Acta Physica Sinica, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [3] Hu Bo, Wu Yue-Hao, Zheng Yu-Lu, Dai Shi-Xun. Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2 μm. Acta Physica Sinica, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [4] Yang An-Ping,  Wang Yu-Wei,  Zhang Shao-Wei,  Li Xing-Long,  Yang Zhi-Jie,  Li Yao-Cheng,  Yang Zhi-Yong. Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [5] Wu Bo, Zhao Zhe-Ming, Wang Xun-Si, Jang Ling, Mi Nan, Pan Zhang-Hao, Zhang Pei-Qing, Liu Zi-Jun, Nie Qiu-Hua, Dai Shi-Xun. Investigation on Te-based chalcogenide glasses for far-infrared fiber. Acta Physica Sinica, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [6] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [7] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [8] Zhao Zhe-Ming, Wu Bo, Liu Ya-Jie, Jiang Ling, Mi Nan, Wang Xun-Si, Liu Zi-Jun, Liu Shuo, Pan Zhang-Hao, Nie Qiu-Hua, Dai Shi-Xun. Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber. Acta Physica Sinica, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [9] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] Qiao Bei-Jing, Chen Fei-Fei, Huang Yi-Cong, Dai Shi-Xun, Nie Qiu-Hua, Xu Tie-Feng. Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses. Acta Physica Sinica, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [11] Lin Chang-Gui, Zhai Su-Min, Li Zhuo-Bin, Qu Guo-Shun, Gu Shao-Xuan, Tao Hai-Zheng, Dai Shi-Xun. Physiochemical properties and crystallization behavior of GeS2-In2S3 chalcogenide glasses. Acta Physica Sinica, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [12] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [13] Yang Pei-Long, Dai Shi-Xun, Yi Chang-Shen, Zhang Pei-Qing, Wang Xun-Si, Wu Yue-Hao, Xu Yin-Sheng, Lin Chang-Gui. Design and performance of mid-IR dispersion in photonic crystal fiber prepared from a flattened chalcogenide glass. Acta Physica Sinica, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [14] Yang Zhi-Qing, Wang Fei-Li, Lin Chang-Gui. Crystallization behavior and kinetics mechanism of 20GeS2·80Sb2S3 chalcogenide glass. Acta Physica Sinica, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [15] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [16] Lin Chang-Gui, Li Zhuo-Bin, Qian Hai-Jiao, Ni Wen-Hao, Li Yan-Ying, Dai Shi-Xun. Compositional dependence of crystallization behavior in GeS2-Ga2S3-CsI chalcogenide glass. Acta Physica Sinica, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [18] Liu Shuo, Li Shu-Guang, Fu Bo, Zhou Hong-Song, Feng Rong-Pu. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber. Acta Physica Sinica, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [19] Dai Shi-Xun, Peng Bo, Le Fang-Da, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Mid-infrared emission properties of Dy3+-doped Ge-Ga-S-CsI glasses. Acta Physica Sinica, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [20] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
Metrics
  • Abstract views:  1441
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2024
  • Accepted Date:  27 May 2024
  • Available Online:  31 May 2024
  • Published Online:  20 July 2024

/

返回文章
返回