-
Chalcogenide glass has been considered to be a promising optical material for infrared (IR) transmission and nonlinear optics because of its favorable physical properties such as wide IR transparent windows, high linear and nonlinear refractive indices, and tunable photosensitivity. In many optical designs and practical applications, the refractive index (n) and optical bandgap (Eg) are two important parameters. Aiming to evaluate the composition dependence of the n and Eg in Ge-As-S chalcogenide glasses, a series of glasses with different stoichiometric characteristics are synthesized in quartz tubes under vacuum by the melt quenching technique. The structure, n and Eg of the glass are investigated by Raman spectroscopy, ellipsometry, and diffused reflectance spectroscopy, respectively.To eliminate thermal effects on the measured Raman spectra, the data are corrected by the Bose-Einstein thermal factor. Raman spectrum analyses indicate that Ge-As-S glass has a continuous network structure with interconnected [GeS4] tetrahedra and [AsS3] pyramids forming the backbone. When S amount is excess, S chains or S8 rings emerge. When S amount is deficient, As4S4/As4S3 molecules are formed, and even a large number of As-As/Ge-Ge homopolar bonds appear in the structure. The n values at different wavelengths are obtained by fitting the ellipsometry data with the Sellmeier dispersion model. The values of molar refractivity (Ri) of Ge, As and S elements are evaluated by using the measured n and density (d) of the investigated glass. The optimal values of Ri at 2-10 m for each element are RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol, and RS=7.78-7.86 cm3/mol, respectively; and the values decrease with increasing wavelength. The n of Ge-As-S glass is well quantitatively correlated to the d and the Ri of constituent elements, so that its value can be predicted or tailored within 1% deviation. A method to determine reliable Eg of a glass is proposed based on diffuse reflectance spectrum (DRS) of glass powders. To determine Eg of a glass, the absorption coefficient () is required to be as low as ~104 cm-1. For a 1-mm-thick bulk glass, the detection limit of a spectrophotometer is typically 100 cm-1. To obtain a reasonable Eg, the sample thickness used for the measurement must be less than 10 m. Such a thin glass sample is difficult to prepare. In comparison, DRS of glass powers measured using a spectrophotometer is able to provide valid absorption data in a 104 cm-1 range required for Eg determination. In this proposed method, the Kubelka-Munk function F(R), which is proportional to of the glass, is calculated from the measured DRS on the glass powders. The F(R) is calibrated by using the DRS of a glass (e.g. As2S3) with a known Eg. Using the same F(R) absorbance value, Eg of the Ge-As-S glass is determined based on DRS of powders measured under the same condition. The Eg of Ge-As-S glass is broadly correlated to the average bond energy of the glass. The glass containing more S atoms tends to show a higher average bond energy, and therefore exhibits a larger Eg.
-
Keywords:
- optical materials /
- chalcogenide glasses /
- Raman spectroscopy /
- refractive index
[1] Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519
[2] Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1
[3] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439
[4] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141
[5] Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649
[6] Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927
[7] Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113
[8] Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830
[9] Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]
[10] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389
[11] Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781
[12] Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78
[13] Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[14] Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143
[15] Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61
[16] Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3
[17] Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444
[18] Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71
[19] Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567
[20] Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49
[21] Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404
[22] Ward A T 1968 J. Phys. Chem. B 72 4133
[23] Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132
[24] Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067
[25] Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410
[26] Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]
[27] Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]
[28] Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319
[29] Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236
[30] Street R A 1976 Adv. Phys. 25 397
[31] Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647
[32] Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902
[33] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[34] Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367
[35] Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245
[36] Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139
-
[1] Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519
[2] Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1
[3] Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439
[4] Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141
[5] Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649
[6] Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927
[7] Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113
[8] Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830
[9] Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]
[10] Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389
[11] Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781
[12] Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78
[13] Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081
[14] Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143
[15] Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61
[16] Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3
[17] Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444
[18] Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71
[19] Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567
[20] Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49
[21] Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404
[22] Ward A T 1968 J. Phys. Chem. B 72 4133
[23] Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132
[24] Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067
[25] Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410
[26] Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]
[27] Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]
[28] Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319
[29] Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236
[30] Street R A 1976 Adv. Phys. 25 397
[31] Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647
[32] Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902
[33] Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011
[34] Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367
[35] Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245
[36] Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139
Catalog
Metrics
- Abstract views: 8028
- PDF Downloads: 258
- Cited By: 0