Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tailoring structure and property of Ge-As-S chalcogenide glass

Yang Yan Chen Yun-Xiang Liu Yong-Hua Rui Yang Cao Feng-Yan Yang An-Ping Zu Cheng-Kui Yang Zhi-Yong

Citation:

Tailoring structure and property of Ge-As-S chalcogenide glass

Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Chalcogenide glass has been considered to be a promising optical material for infrared (IR) transmission and nonlinear optics because of its favorable physical properties such as wide IR transparent windows, high linear and nonlinear refractive indices, and tunable photosensitivity. In many optical designs and practical applications, the refractive index (n) and optical bandgap (Eg) are two important parameters. Aiming to evaluate the composition dependence of the n and Eg in Ge-As-S chalcogenide glasses, a series of glasses with different stoichiometric characteristics are synthesized in quartz tubes under vacuum by the melt quenching technique. The structure, n and Eg of the glass are investigated by Raman spectroscopy, ellipsometry, and diffused reflectance spectroscopy, respectively.To eliminate thermal effects on the measured Raman spectra, the data are corrected by the Bose-Einstein thermal factor. Raman spectrum analyses indicate that Ge-As-S glass has a continuous network structure with interconnected [GeS4] tetrahedra and [AsS3] pyramids forming the backbone. When S amount is excess, S chains or S8 rings emerge. When S amount is deficient, As4S4/As4S3 molecules are formed, and even a large number of As-As/Ge-Ge homopolar bonds appear in the structure. The n values at different wavelengths are obtained by fitting the ellipsometry data with the Sellmeier dispersion model. The values of molar refractivity (Ri) of Ge, As and S elements are evaluated by using the measured n and density (d) of the investigated glass. The optimal values of Ri at 2-10 m for each element are RGe=9.83-10.42 cm3/mol, RAs=11.72-11.87 cm3/mol, and RS=7.78-7.86 cm3/mol, respectively; and the values decrease with increasing wavelength. The n of Ge-As-S glass is well quantitatively correlated to the d and the Ri of constituent elements, so that its value can be predicted or tailored within 1% deviation. A method to determine reliable Eg of a glass is proposed based on diffuse reflectance spectrum (DRS) of glass powders. To determine Eg of a glass, the absorption coefficient () is required to be as low as ~104 cm-1. For a 1-mm-thick bulk glass, the detection limit of a spectrophotometer is typically 100 cm-1. To obtain a reasonable Eg, the sample thickness used for the measurement must be less than 10 m. Such a thin glass sample is difficult to prepare. In comparison, DRS of glass powers measured using a spectrophotometer is able to provide valid absorption data in a 104 cm-1 range required for Eg determination. In this proposed method, the Kubelka-Munk function F(R), which is proportional to of the glass, is calculated from the measured DRS on the glass powders. The F(R) is calibrated by using the DRS of a glass (e.g. As2S3) with a known Eg. Using the same F(R) absorbance value, Eg of the Ge-As-S glass is determined based on DRS of powders measured under the same condition. The Eg of Ge-As-S glass is broadly correlated to the average bond energy of the glass. The glass containing more S atoms tends to show a higher average bond energy, and therefore exhibits a larger Eg.
      Corresponding author: Yang Zhi-Yong, yangzhiyong@jsnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205207, 61405080, 61575086) and the Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (Grant No. 201410320016Z).
    [1]

    Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1

    [3]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439

    [4]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141

    [5]

    Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649

    [6]

    Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927

    [7]

    Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113

    [8]

    Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830

    [9]

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]

    [10]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389

    [11]

    Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781

    [12]

    Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78

    [13]

    Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [14]

    Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143

    [15]

    Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61

    [16]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3

    [17]

    Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444

    [18]

    Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71

    [19]

    Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567

    [20]

    Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49

    [21]

    Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404

    [22]

    Ward A T 1968 J. Phys. Chem. B 72 4133

    [23]

    Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132

    [24]

    Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067

    [25]

    Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410

    [26]

    Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]

    [27]

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]

    [28]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319

    [29]

    Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236

    [30]

    Street R A 1976 Adv. Phys. 25 397

    [31]

    Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647

    [32]

    Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902

    [33]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [34]

    Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367

    [35]

    Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245

    [36]

    Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139

  • [1]

    Zhang X, Guimond Y, Bellec Y 2003 J. Non-Cryst. Solids 326 519

    [2]

    Lucas P, Riley M R, Boussard-Pldel C, Bureau B 2006 Anal. Biochem. 351 1

    [3]

    Snopatin G E, Shiryaev V S, Plotnichenko V G, Dianov E M, Churbanov M F 2009 Inorg. Mater. 45 1439

    [4]

    Eggleton B J, Luther-Davies B, Richardson K 2011 Nat. Photonics 5 141

    [5]

    Cha D H, Kim H, Hwang Y, Jeong J C, Kim J 2012 Appl. Opt. 51 5649

    [6]

    Ma P, Choi D, Yu Y, Gai X, Yang Z, Debbarma S, Madden S, Luther-Davies B 2013 Opt. Express 21 29927

    [7]

    Sanghera J, Gibson D 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p113

    [8]

    Petersen C R, Mller U, Kubat I, Zhou B, Dupont S, Ramsay J, Benson T, Sujecki S 2014 Nat. Photonics 8 830

    [9]

    Qiao B J, Chen F F, Huang Y C, Dai S X, Nie Q H, Xu T F 2015 Acta. Phys. Sin. 64 154216 (in Chinese) [乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰 2015 物理学报 64 154216]

    [10]

    Zhang B, Guo W, Yu Y, Zhai C, Qi S, Yang A, Li L, Yang Z, Wang R, Tang D 2015 J. Am. Ceram. Soc. 98 1389

    [11]

    Stabl M, Tichy L 2004 J. Optoelectron. Adv. Mater. 6 781

    [12]

    Kincl M, Tichy L 2007 Mater. Chem. Phys. 103 78

    [13]

    Yu Y, Zhang B, Gai X, Zhai C, Qi S, Guo W, Yang Z, Wang R, Choi D, Madden S, Luther-Davies B 2015 Opt. Lett. 40 1081

    [14]

    Aitken B G, Ponader C W 1999 J. Non-Cryst. Solids 256-257 143

    [15]

    Musgraves J, Wachtel P, Gleason B, Richardson K 2014 J. Non-Cryst. Solids 386 61

    [16]

    Woollam J A, Johs B D, Herzinger C M, Hilfiker J N, Synowicki R A, Bungay C L 1999 Proc. SPIE Int. Soc. Opt. Eng. CR72 3

    [17]

    Dantanarayana H, Abdel-Moneim N, Tang Z, Sojka L, Sujecki S, Furniss D, Seddon A, Kubat I, Bang O, Benson T 2014 Opt. Mater. Express 4 1444

    [18]

    Brooker M H, Nielsen O F, Praestgaard E 1988 J. Raman Spectrosc. 19 71

    [19]

    Lucovsky G, Nemanich R J, Solin S A, Keezer R C 1975 Solid State Commun. 17 1567

    [20]

    Bertoluzza A, Fagnano C, Monti P, Semerano G 1978 J. Non-Cryst. Solids 29 49

    [21]

    Lin F, Gulbiten O, Yang Z Y, Calvez L, Lucas P 2011 J. Phys. D: Appl. Phys. 44 045404

    [22]

    Ward A T 1968 J. Phys. Chem. B 72 4133

    [23]

    Becucci M, Bini R, Castellucci E, Eckert B, Jodl H J 1997 J. Phys. Chem. B 101 2132

    [24]

    Ewen P, Sik M J, Owen A E 1980 Solid State Commun. 33 1067

    [25]

    Christian B H, Gillespie R J, Sawyer J F 1981 Inorg. Chem. 20 3410

    [26]

    Gan F X, Mao X L, Wang H, Yang P H 1984 J. Chin. Ceram. Soc. 12 301 (in Chinese) [干福熹, 毛锡赉, 王豪, 杨佩红 1984 硅酸盐学报 12 301]

    [27]

    Cui M L 1987 Glass Technology (Beijing: Light Industry Press) p140 (in Chinese) [崔茂林 1987 玻璃工艺学 (北京: 轻工业出版社) 第140页]

    [28]

    Feltz A 1993 Amorphous Inorganic Materials and Glasses (Weinheim: VCH) p319

    [29]

    Elliott S R 1983 Physics of Amorphous Materials (London: Longman) p236

    [30]

    Street R A 1976 Adv. Phys. 25 397

    [31]

    Munzar M, Tichy L 2000 J. Phys. Chem. Solids 61 1647

    [32]

    Xu Y, Yang G, Wang W, Zeng H, Zhang X, Chen G 2007 J. Am. Ceram. Soc. 91 902

    [33]

    Wang T, Gai X, Wei W, Wang R, Yang Z, Shen X, Madden S, Luther-Davies B 2014 Opt. Mater. Express 4 1011

    [34]

    Torrent J, Barron V 2008 Methods of Soil Analysis: Part 5-Mineralogical Methods (Madison: Soil Science Society of America) p367

    [35]

    Karvaly B, Hevesi I 1971 Z. Naturforsch. A: Phys. Sci. 26 245

    [36]

    Tanaka K 2014 Chalcogenide Glasses: Preparation, Properties and Applications (Oxford: Woodhead Publishing) p139

  • [1] Xu Si-Wei, Wang Xun-Si, Shen Xiang. Structure of GexGa8S92–x glasses studied by high-resolution X-ray photoelectron spectroscopy and Raman scattering. Acta Physica Sinica, 2023, 72(1): 017101. doi: 10.7498/aps.72.20221653
    [2] Xu Si-Wei, Yang Xiao-Ning, Yang Da-Xin, Wang Xun-Si, Shen Xiang. Effect of substitution of S for Se on structure and physical properties in Ge11.5As24Se64.5–xSx glass. Acta Physica Sinica, 2021, 70(16): 167101. doi: 10.7498/aps.70.20210536
    [3] Tian Kang-Zhen, Hu Yong-Sheng, Ren He, Qi Si-Sheng, Yang An-Ping, Feng Xian, Yang Zhi-Yong. Ge-As-S chalcogenide glass fiber with high laser damage threshold and mid-infrared supercontinuum generation. Acta Physica Sinica, 2021, 70(4): 047801. doi: 10.7498/aps.70.20201324
    [4] Chong Tao, Fu Hua, Li Tao, Mo Jian-Jun, Zhang Xu-Ping, Ma Xiao, Zheng Xian-Xu. An experimental method of simultaneously studying refractive index and dynamic properties of transparent materials. Acta Physica Sinica, 2021, 70(17): 176201. doi: 10.7498/aps.70.20210414
    [5] Yang An-Ping,  Wang Yu-Wei,  Zhang Shao-Wei,  Li Xing-Long,  Yang Zhi-Jie,  Li Yao-Cheng,  Yang Zhi-Yong. Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [6] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [7] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [8] Qiao Bei-Jing, Chen Fei-Fei, Huang Yi-Cong, Dai Shi-Xun, Nie Qiu-Hua, Xu Tie-Feng. Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses. Acta Physica Sinica, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [9] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [10] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [11] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [13] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [14] Zhao Yue-Zhi, Liao Gui-Hua, Chen Wen-Juan, Cao Qin-Cun. Structure and optical properties of TeO2-Nb2O5-BaCl2 glass. Acta Physica Sinica, 2012, 61(23): 237802. doi: 10.7498/aps.61.237802
    [15] Zhang Wei, Chen Yu, Fu Jing, Chen Fei-Fei, Shen Xiang, Dai Shi-Xun, Lin Chang-Gui, Xu Tie-Feng. Study on fabrication and optical properties of Ge-Sb-Se thin films. Acta Physica Sinica, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [16] Lin Chang-Gui, Li Zhuo-Bin, Qian Hai-Jiao, Ni Wen-Hao, Li Yan-Ying, Dai Shi-Xun. Compositional dependence of crystallization behavior in GeS2-Ga2S3-CsI chalcogenide glass. Acta Physica Sinica, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] Liu Shuo, Li Shu-Guang, Fu Bo, Zhou Hong-Song, Feng Rong-Pu. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber. Acta Physica Sinica, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] Fu Pei-Zhen, Hou Bi-Hui, Wang Li, Zhong Ren-Bin, Wang Ya-Li, Zhang Er-Pan, Jian Yan-Zhen. Terahertz spectra and soft optical phonons of PbB4O7 crystal. Acta Physica Sinica, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [19] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [20] Qin Xiu-Juan, Shao Guang-Jie, Liu Ri-Ping, Wang Wen-Kui, Yao Yu-Shu, Meng Hui-Min. Preparation and Raman spectra of high quality ZnO nano-bulk materials. Acta Physica Sinica, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
Metrics
  • Abstract views:  6538
  • PDF Downloads:  232
  • Cited By: 0
Publishing process
  • Received Date:  25 February 2016
  • Accepted Date:  05 April 2016
  • Published Online:  05 June 2016

/

返回文章
返回