Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies

Chen Chuan-Wen Xiang Yang

Citation:

Magnetization distribution in exchange spring bilayers with mutually orthogonal anisotropies

Chen Chuan-Wen, Xiang Yang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A soft/hard bilayer system with mutually orthogonal anisotropies is considered in this paper. The easy axis of the hard layer is perpendicular to the film plane, and the easy axis of the soft layer is parallel to the film plane. Pt84Co16 is chosen as the soft layer material, and TbFeCo is chosen as the hard layer material. The one-dimensional continuum micromagnetic model is used. The characteristics of nucleation fields, angular distribution and hysteresis loops are studied. The calculation results show that the nucleation field decreases rapidly and even turns negative with increasing soft layer thickness. This negative nucleation field is caused by the demagnetizing field and the easy axis orientation of the soft layer which is parallel to the film plane. Both of these two factors can induce an effective in-plane uniaxial anisotropy, which will tend to align the magnetization of the soft layer parallel to the film plane. As the magnetocrystalline anisotropy constant K of the soft layer is very small, the negative nucleation field mainly comes from the demagnetizing field of the soft layer. The angular distribution calculation shows that the change rate of magnetization deviation angle (degree per nanometer) along z axis in the soft layer is faster than that in the hard layer. The angular change rate could be adjusted by varying the anisotropy constant ratio, exchange energy constant ratio, or external field. When the anisotropy constant ratio Ks/Kh (soft/hard) or exchange energy constant ratio As/Ah (soft/hard) increases, the angular change rate ratio (soft/hard) decreases. Especially when both Ks/Kh and As/Ah increase at the same time, the angular change rate in the hard layer could become faster than that in the soft layer. If the anisotropy constant Ks becomes larger, it is more difficult for the magnetization in the soft layer to deviate from its easy axis than before. This will also enhance the pinning effect of the magnetization in the soft layer, and reduce the difference in deviation angle between the two boundaries of the soft layer. When the exchange energy constant As increases, the magnetization tends to become parallel to the neighboring magnetization, which also reduces the angular change of magnetization in the soft layer. As the anisotropy constant is roughly proportional to the square of spontaneous magnetization, the effect of spontaneous magnetization on the angular change rate comes from the anisotropy constant change. The simulation for the hysteresis loops shows that the saturation field strength increases while the remanence decreases with increasing both the values of Ks and As.
      Corresponding author: Xiang Yang, yxiang@hqu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2013J05010), the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research, China (Grant No. ZQN-YX107), and the Scientific Research Foundation of Huaqiao University, China (Grant Nos. 11BS403, 11BS404).
    [1]

    Uzdin V M, Vega A, Khrenov A, Keune W, Kuncser V E, Jiang J S, Bader S D 2012 Phys. Rev. B 85 024409

    [2]

    Shelford L R, Liu Y, Al-Jarah U, de Groot P A J, Bowden G J, Ward R C C, Hicken R J 2014 Phys. Rev. Lett. 113 067601

    [3]

    Wang K, Ward R C C, de Groot P A J 2014 Mater. Lett. 116 143

    [4]

    Jiang J S, Bader S D 2014 J. Phys-condens. Mater. 26 064214

    [5]

    Bance S, Oezelt H, Schrefl T, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Evans R F L, Chantrell R W, Shoji T, Yano M, Sakuma N, Kato A, Manabe A 2014 Appl. Phys. Lett. 105 192401

    [6]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [7]

    Suess D, Schrefl T 2013 Appl. Phys. Lett. 102 162405

    [8]

    Weller D, Parker G, Mosendz O, Champion E, Stipe B, Wang X B, Klemmer T, Ju G P, Ajan A 2014 IEEE Trans. Magn. 50 3100108

    [9]

    Wang K, Chen R F, Chen C W, Ward R C C 2015 J. Magn. Magn. Mater. 377 295

    [10]

    Wang K, Xiang Y, Chen C W, Zhuang F J, Wu X F, Ward R 2015 Funct. Mater. Lett. 8 1550053

    [11]

    Zhang Y P, Wang X Y, Lin G Q, Li Z, Li Z Y, Shen D F, Gan F X 2004 Acta Phys. Sin. 53 614 (in Chinese) [张约品, 王现英, 林更琪, 李震, 李佐宜, 沈德芳, 干福熹 2004 物理学报 53 614]

    [12]

    Yulaev I, Lubarda M V, Mangin S, Lomakin V, Fullerton E E 2011 Appl. Phys. Lett. 99 132502

    [13]

    Suess D, Vogler C, Abert C, Bruckner F, Windl R, Breth L, Fidler J 2015 J. Appl. Phys. 117 163913

    [14]

    Hsu J H, Tsai C L, Lee C M, Saravanan P 2015 J. Appl. Phys. 117 17A715

    [15]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [16]

    Zhao G P, Bo N, Zhang H W, Feng Y P, Deng Y 2010 J. Appl. Phys. 107 083907

    [17]

    Mibu K, Nagahama T, Shinjo T 1996 J. Magn. Magn. Mater. 163 75

    [18]

    Fullerton E E, Jiang J S, Grimsditch M, Sowers C H, Bader S D 1998 Phys. Rev. B 58 12193

    [19]

    Bowden G J, Beaujour J M L, Zhukov A A, Rainford B D, de Groot P A J, Ward R C C, Wells M R 2003 J. Appl. Phys. 93 6480

    [20]

    Amato M, Pini M G, Rettori A 1999 Phys. Rev. B 60 3414

    [21]

    Demirtas S, Hossu M R, Arikan M, Koymen A R, Salamon M B 2007 Phys. Rev. B 76 214430

    [22]

    Zhang Y, Kramer M J, Banerjee D, Takeuchi I, Liu J P 2011 J. Appl. Phys. 110 053914

    [23]

    Zhang Y, Zhou Q, Ding J, Yang Z, Zhu B, Yang X, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [24]

    Suess D, Schrefl T, Fhler S, Kirschner M, Hrkac G, Dorfbauer F, Fidler J 2005 Appl. Phys. Lett. 87 012504

    [25]

    Goll D, Breitling A, Gu L, van Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [26]

    Pal S, Barman S, Hellwig O, Barman A 2014 J. Appl. Phys. 115 17D105

    [27]

    Hu X, Kawazoe Y 1994 Phys. Rev. B 49 3294

    [28]

    Nguyen T N A, Knut R, Fallahi V, Chung S, Le Q T, Mohseni S M, Karis O, Peredkov S, Dumas R K, Miller C W, Akerman J 2014 Phys. Rev. Appl. 2 044014

    [29]

    Navas D, Torrejon J, Beron F, Redondo C, Batallan F, Toperverg B P, Devishvili A, Sierra B, Castano F, Pirota K R, Ross C A 2012 New J. Phys. 14 113001

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Saravanan P, Hsu J H, Tsai C L, Tsai C Y, Lin Y H, Kuo C Y, Wu J C, Lee C M 2014 J. Appl. Phys. 115 243905

    [32]

    Bill A, Braun H B 2004 J. Magn. Magn. Mater. 272-276 1266

    [33]

    Casoli F, Albertini F, Nasi L, Fabbrici S, Cabassi R, Bolzoni F, Bocchi C 2008 Appl. Phys. Lett. 92 142506

  • [1]

    Uzdin V M, Vega A, Khrenov A, Keune W, Kuncser V E, Jiang J S, Bader S D 2012 Phys. Rev. B 85 024409

    [2]

    Shelford L R, Liu Y, Al-Jarah U, de Groot P A J, Bowden G J, Ward R C C, Hicken R J 2014 Phys. Rev. Lett. 113 067601

    [3]

    Wang K, Ward R C C, de Groot P A J 2014 Mater. Lett. 116 143

    [4]

    Jiang J S, Bader S D 2014 J. Phys-condens. Mater. 26 064214

    [5]

    Bance S, Oezelt H, Schrefl T, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Evans R F L, Chantrell R W, Shoji T, Yano M, Sakuma N, Kato A, Manabe A 2014 Appl. Phys. Lett. 105 192401

    [6]

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509 (in Chinese) [鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509]

    [7]

    Suess D, Schrefl T 2013 Appl. Phys. Lett. 102 162405

    [8]

    Weller D, Parker G, Mosendz O, Champion E, Stipe B, Wang X B, Klemmer T, Ju G P, Ajan A 2014 IEEE Trans. Magn. 50 3100108

    [9]

    Wang K, Chen R F, Chen C W, Ward R C C 2015 J. Magn. Magn. Mater. 377 295

    [10]

    Wang K, Xiang Y, Chen C W, Zhuang F J, Wu X F, Ward R 2015 Funct. Mater. Lett. 8 1550053

    [11]

    Zhang Y P, Wang X Y, Lin G Q, Li Z, Li Z Y, Shen D F, Gan F X 2004 Acta Phys. Sin. 53 614 (in Chinese) [张约品, 王现英, 林更琪, 李震, 李佐宜, 沈德芳, 干福熹 2004 物理学报 53 614]

    [12]

    Yulaev I, Lubarda M V, Mangin S, Lomakin V, Fullerton E E 2011 Appl. Phys. Lett. 99 132502

    [13]

    Suess D, Vogler C, Abert C, Bruckner F, Windl R, Breth L, Fidler J 2015 J. Appl. Phys. 117 163913

    [14]

    Hsu J H, Tsai C L, Lee C M, Saravanan P 2015 J. Appl. Phys. 117 17A715

    [15]

    Asti G, Solzi M, Ghidini M, Neri F M 2004 Phys. Rev. B 69 174401

    [16]

    Zhao G P, Bo N, Zhang H W, Feng Y P, Deng Y 2010 J. Appl. Phys. 107 083907

    [17]

    Mibu K, Nagahama T, Shinjo T 1996 J. Magn. Magn. Mater. 163 75

    [18]

    Fullerton E E, Jiang J S, Grimsditch M, Sowers C H, Bader S D 1998 Phys. Rev. B 58 12193

    [19]

    Bowden G J, Beaujour J M L, Zhukov A A, Rainford B D, de Groot P A J, Ward R C C, Wells M R 2003 J. Appl. Phys. 93 6480

    [20]

    Amato M, Pini M G, Rettori A 1999 Phys. Rev. B 60 3414

    [21]

    Demirtas S, Hossu M R, Arikan M, Koymen A R, Salamon M B 2007 Phys. Rev. B 76 214430

    [22]

    Zhang Y, Kramer M J, Banerjee D, Takeuchi I, Liu J P 2011 J. Appl. Phys. 110 053914

    [23]

    Zhang Y, Zhou Q, Ding J, Yang Z, Zhu B, Yang X, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [24]

    Suess D, Schrefl T, Fhler S, Kirschner M, Hrkac G, Dorfbauer F, Fidler J 2005 Appl. Phys. Lett. 87 012504

    [25]

    Goll D, Breitling A, Gu L, van Aken P A, Sigle W 2008 J. Appl. Phys. 104 083903

    [26]

    Pal S, Barman S, Hellwig O, Barman A 2014 J. Appl. Phys. 115 17D105

    [27]

    Hu X, Kawazoe Y 1994 Phys. Rev. B 49 3294

    [28]

    Nguyen T N A, Knut R, Fallahi V, Chung S, Le Q T, Mohseni S M, Karis O, Peredkov S, Dumas R K, Miller C W, Akerman J 2014 Phys. Rev. Appl. 2 044014

    [29]

    Navas D, Torrejon J, Beron F, Redondo C, Batallan F, Toperverg B P, Devishvili A, Sierra B, Castano F, Pirota K R, Ross C A 2012 New J. Phys. 14 113001

    [30]

    Asti G, Ghidini M, Pellicelli R, Pernechele C, Solzi M, Albertini F, Casoli F, Fabbrici S, Pareti L 2006 Phys. Rev. B 73 094406

    [31]

    Saravanan P, Hsu J H, Tsai C L, Tsai C Y, Lin Y H, Kuo C Y, Wu J C, Lee C M 2014 J. Appl. Phys. 115 243905

    [32]

    Bill A, Braun H B 2004 J. Magn. Magn. Mater. 272-276 1266

    [33]

    Casoli F, Albertini F, Nasi L, Fabbrici S, Cabassi R, Bolzoni F, Bocchi C 2008 Appl. Phys. Lett. 92 142506

  • [1] Wang Si-Yuan, Liang Tian-Shou, Shi Peng-Peng. Mechanism of strain-induced magnetic properties changes for metal magnetic memory technology on atomic scale. Acta Physica Sinica, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [2] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [3] He Xin-Xin, Zhao Qian. Micromagnetic studies of influence of interface atomic diffusion on magnetic properties of SmCo/Fe exchange-spring bilayers. Acta Physica Sinica, 2021, 70(19): 197502. doi: 10.7498/aps.70.20210623
    [4] Liu Yu, Xu Zhong-Feng, Wang Xing, Hu Peng-Fei, Zhang Xiao-An. Angular distribution of L characteristic X-ray emission from Au target impacted by photons. Acta Physica Sinica, 2020, 69(12): 123201. doi: 10.7498/aps.69.20191977
    [5] Li Qiong, Shen Li, Yan Jun-Gang, Dai Chang-Jian, Yang Yu-Na. Dynamic properties of Eu 4f76p1/2ns autoionization process. Acta Physica Sinica, 2016, 65(15): 153202. doi: 10.7498/aps.65.153202
    [6] Ma Kun, Xie Lu-You, Zhang Deng-Hong, Dong Chen-Zhong, Qu Yi-Zhi. Theoretical calculation of the photoelectron angular distribution of neon. Acta Physica Sinica, 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [7] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Study on magnetic moment of cation-vacancy. Acta Physica Sinica, 2015, 64(17): 176101. doi: 10.7498/aps.64.176101
    [8] Lü Hou-Xiang, Shi De-Zheng, Xie Zheng-Wei. Relations between traversal time in ferromagnetic/semiconductor(insulator)/ferromagnetic heterojunction and the relative magnetic moment angle in two ferromagnetic layers. Acta Physica Sinica, 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [9] Deng Ya, Zhao Guo-Ping, Bo Niao. The analytical investigation of the magnetic orientation and hysteresis loop in exchange-spring magnetic multilayers. Acta Physica Sinica, 2011, 60(3): 037502. doi: 10.7498/aps.60.037502
    [10] Li De-Jun, Mi Xian-Wu, Deng Ke. Energy levels and magnetic moments of the quantum solitary wave in a one-dimensional ferromagnetic chain. Acta Physica Sinica, 2010, 59(10): 7344-7349. doi: 10.7498/aps.59.7344
    [11] Ge Yu-Cheng. Physical properties of laser-electron Compton scattering. Acta Physica Sinica, 2009, 58(5): 3094-3103. doi: 10.7498/aps.58.3094
    [12] Wei Xi-Ye, Li Quan-Feng, Yan Hui-Yong. Theoretical study on bremsstrahlung of high energy electrons. Acta Physica Sinica, 2009, 58(4): 2313-2319. doi: 10.7498/aps.58.2313
    [13] Xian Cheng-Wei, Zhao Guo-Ping, Zhang Qing-Xiang, Xu Jin-Song. Magnetization reversal of perpendicularly orientated Nd2Fe14B/α-Fe trilayer. Acta Physica Sinica, 2009, 58(5): 3509-3514. doi: 10.7498/aps.58.3509
    [14] Huang Zheng, Chen Bo, Ma Huan-Feng, Zhang Xiu-Lan, Gao Guo-Qiang, Qiang Wei-Rong, Sun Guang-Ai. The effect of the substituted transitional atom M on the magnetism of the intermetallic compounds YFe11M. Acta Physica Sinica, 2008, 57(3): 1867-1871. doi: 10.7498/aps.57.1867
    [15] Wang Qing-Lin, Ge Gui-Xian, Zhao Wen-Jie, Lei Xue-Ling, Yan Yu-Li, Yang Zhi, Luo You-Hua. Density functional theory study on the structure and properties of CoBen(n=1—12) clusters. Acta Physica Sinica, 2007, 56(6): 3219-3226. doi: 10.7498/aps.56.3219
    [16] Zhao Wen-Jie, Yang Zhi, Yan Yu-Li, Lei Xue-Ling, Ge Gui-Xian, Wang Qing-Lin, Luo You-Hua. Ground-state structures and magnetisms of GenFe(n=1—8) clusters: The density functional investigations. Acta Physica Sinica, 2007, 56(5): 2596-2602. doi: 10.7498/aps.56.2596
    [17] Zhao Wen-Jie, Wang Qing-Lin, Ren Feng-Zhu, Luo You-Hua. First principles study of the ground-state structures and magnetism of Zrn Fe(n=2—13)clusters. Acta Physica Sinica, 2007, 56(10): 5746-5753. doi: 10.7498/aps.56.5746
    [18] Zheng Zhi-Yuan, Li Yu-Tong, Yuan Xiao-Hui, Xu Miao-Hua, Liang Wen-Xi, Yu Quan-Zhi, Zhang Yi, Wang Zhao-Hua, Wei Zhi-Yi, Zhang Jie. Measurements of angular distribution and energy spectrum of hot electrons. Acta Physica Sinica, 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [19] Chen Li, Li Hua, Dong Jian-Min, Pan Feng-Chun, Mei Liang-Mo. Study on the spin-polarized electronicstructures and atomic magnetic moments ofcluster La8-xBaxCuO6. Acta Physica Sinica, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [20] ZHANG SUI-MENG, WU XING-JU. A THEORETICAL STUDY ON ELECTRON ANGULAR DISTRIBUTIONS FOR (e,2e) PROCESSES ON HYDROGEN. Acta Physica Sinica, 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
Metrics
  • Abstract views:  5864
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2015
  • Accepted Date:  30 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回