Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber

Zhao Zhe-Ming Wu Bo Liu Ya-Jie Jiang Ling Mi Nan Wang Xun-Si Liu Zi-Jun Liu Shuo Pan Zhang-Hao Nie Qiu-Hua Dai Shi-Xun

Citation:

Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber

Zhao Zhe-Ming, Wu Bo, Liu Ya-Jie, Jiang Ling, Mi Nan, Wang Xun-Si, Liu Zi-Jun, Liu Shuo, Pan Zhang-Hao, Nie Qiu-Hua, Dai Shi-Xun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the development of infrared optics, low-loss waveguide materials are required. Especially, low-loss optical fiber development for far-infrared application has become a focus. Chalcogenide Ge-As-Se-Te(GAST) glasses and fibers for far-infrared light are prepared and investigated in this paper. The thermal properties and the infrared transmissions are reported. The influences of oxygen and hydrogen on the glass transmission and fiber attenuation are discussed. Low-loss GAST fiber with a structure of fine core/cladding is reported by a novel extrusion method (0.46 dB/m at 8.7 m, 1.31 dB/m at 10.6 m, base loss being under 1 dB/m from 7.2 to 10.3 m). Here, the glasses are prepared by traditional vacuum melt-quenching and vapor distillation method. Structure and physical properties of GAST glass system are studied with X ray diffractions and thermal expansion instrument. Optical spectra of GAST glass system are obtained by spectrophotometer and infrared spectrometer. Main purification processes with different oxygen-getters (magnesium and aluminum) are disclosed. The fiber attenuation is measured by the cut-back method with an Fourier transform infrared spectroscopy spectrometer. The lowest loss of this fiber can be reduced to 1.32 dB/m at 10.6 m, as it has a structure of Ge20As20Se15Te45 core and Ge20As20Se17Te43 cladding. The results show that these glasses are well transparent in a wide infrared window from 1.1 to 22 m, and these glass fibers can transmit far-infrared light up to 12 m, thus the GAST glass system is one of good candidates for far-infrared transparent materials. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These fibers are suited for the power delivery of CO2 laser.
      Corresponding author: Wang Xun-Si, wangxunsi@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61377099, 61177087, 61307060), the Opened Key-Subject Construction Fund of Zhejiang Province, China (Grant Nos. xkxl1508, xkxl1318), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-10-0976), the 151 Talents in Zhejiang Province, China, and the K. C. Wong Magna Fund of Ningbo University, China.
    [1]

    Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440

    [2]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [3]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 物理学报 60 351]

    [4]

    Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351

    [5]

    Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004

    [6]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586

    [7]

    Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77

    [8]

    Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148

    [9]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241

    [10]

    Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115

    [11]

    Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801

    [12]

    Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313

    [13]

    Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22

    [14]

    Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306

    [15]

    Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737

    [16]

    Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122

    [17]

    Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360

    [18]

    Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [19]

    Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455

  • [1]

    Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440

    [2]

    Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547

    [3]

    Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 物理学报 60 351]

    [4]

    Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351

    [5]

    Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004

    [6]

    Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586

    [7]

    Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77

    [8]

    Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148

    [9]

    Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241

    [10]

    Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115

    [11]

    Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801

    [12]

    Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313

    [13]

    Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22

    [14]

    Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306

    [15]

    Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737

    [16]

    Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122

    [17]

    Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360

    [18]

    Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 物理学报 59 7949]

    [19]

    Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455

  • [1] Mi Hao-Ting, Yang An-Ping, Huang Zi-Xuan, Tian Kang-Zhen, Li Yue-Bing, Ma Cheng, Liu Zi-Jun, Shen Xiang, Yang Zhi-Yong. Preparation and properties of Ga2S3-Sb2S3-Ag2S chalcogenide glasses and fibers. Acta Physica Sinica, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [2] Hu Bo, Wu Yue-Hao, Zheng Yu-Lu, Dai Shi-Xun. Fabrication and characterization of chalcogenide glass microsphere lasers operating at 2 μm. Acta Physica Sinica, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [3] Yang An-Ping,  Wang Yu-Wei,  Zhang Shao-Wei,  Li Xing-Long,  Yang Zhi-Jie,  Li Yao-Cheng,  Yang Zhi-Yong. Refractive index and thermo-optic coefficient of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [4] Wu Bo, Zhao Zhe-Ming, Wang Xun-Si, Jang Ling, Mi Nan, Pan Zhang-Hao, Zhang Pei-Qing, Liu Zi-Jun, Nie Qiu-Hua, Dai Shi-Xun. Investigation on Te-based chalcogenide glasses for far-infrared fiber. Acta Physica Sinica, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [5] Xu Hang, Peng Xue-Feng, Dai Shi-Xun, Xu Dong, Zhang Pei-Qing, Xu Ying-Sheng, Li Xing, Nie Qiu-Hua. Raman gain of Ge-Sb-Se chalcogenide glass. Acta Physica Sinica, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [6] Yang Yan, Chen Yun-Xiang, Liu Yong-Hua, Rui Yang, Cao Feng-Yan, Yang An-Ping, Zu Cheng-Kui, Yang Zhi-Yong. Tailoring structure and property of Ge-As-S chalcogenide glass. Acta Physica Sinica, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [7] Wu Liang-Wei, Zhang Zheng-Ping. Broadband and low-loss left-handed materials based on multi-opening cross shape structures. Acta Physica Sinica, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [8] He Zheng-Rui, Geng You-Lin. Design and analysis of a new type of wideband low-loss and small size left-handed materials. Acta Physica Sinica, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [9] Qiao Bei-Jing, Chen Fei-Fei, Huang Yi-Cong, Dai Shi-Xun, Nie Qiu-Hua, Xu Tie-Feng. Third-order optical nonlinearity at communication wavelength and spectral characteristics of Ge-Se based chalcogenide glasses. Acta Physica Sinica, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [10] Lin Chang-Gui, Zhai Su-Min, Li Zhuo-Bin, Qu Guo-Shun, Gu Shao-Xuan, Tao Hai-Zheng, Dai Shi-Xun. Physiochemical properties and crystallization behavior of GeS2-In2S3 chalcogenide glasses. Acta Physica Sinica, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [11] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] Yang Pei-Long, Dai Shi-Xun, Yi Chang-Shen, Zhang Pei-Qing, Wang Xun-Si, Wu Yue-Hao, Xu Yin-Sheng, Lin Chang-Gui. Design and performance of mid-IR dispersion in photonic crystal fiber prepared from a flattened chalcogenide glass. Acta Physica Sinica, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [13] Yang Zhi-Qing, Wang Fei-Li, Lin Chang-Gui. Crystallization behavior and kinetics mechanism of 20GeS2·80Sb2S3 chalcogenide glass. Acta Physica Sinica, 2013, 62(18): 184211. doi: 10.7498/aps.62.184211
    [14] Yi Chang-Shen, Dai Shi-Xun, Zhang Pei-Qing, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Design of a novel single-mode large mode area infrared chalcogenide glass photonic crystal fibers. Acta Physica Sinica, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [15] Zhang Wei, Chen Yu, Fu Jing, Chen Fei-Fei, Shen Xiang, Dai Shi-Xun, Lin Chang-Gui, Xu Tie-Feng. Study on fabrication and optical properties of Ge-Sb-Se thin films. Acta Physica Sinica, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [16] Lin Chang-Gui, Li Zhuo-Bin, Qian Hai-Jiao, Ni Wen-Hao, Li Yan-Ying, Dai Shi-Xun. Compositional dependence of crystallization behavior in GeS2-Ga2S3-CsI chalcogenide glass. Acta Physica Sinica, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] Zhou Ya-Xun, Yu Xing-Yan, Xu Xing-Chen, Dai Shi-Xun. Fabrication of erbium-doped chalcogenide glass and study on mid-IR amplifying characteristics of its microstructured fiber. Acta Physica Sinica, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [18] Liu Shuo, Li Shu-Guang, Fu Bo, Zhou Hong-Song, Feng Rong-Pu. Analysis of coupling characteristics of midinfrared high polarization chalcogenide glass dual-core photonic crystal fiber. Acta Physica Sinica, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [19] Dai Shi-Xun, Peng Bo, Le Fang-Da, Wang Xun-Si, Shen Xiang, Xu Tie-Feng, Nie Qiu-Hua. Mid-infrared emission properties of Dy3+-doped Ge-Ga-S-CsI glasses. Acta Physica Sinica, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [20] Nie Qiu-Hua, Wang Guo-Xiang, Wang Xun-Si, Xu Tie-Feng, Dai Shi-Xun, Shen Xiang. Effect of Ga on optical properties of novel Te-based far infrared transmitting chalcogenide glasses. Acta Physica Sinica, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
Metrics
  • Abstract views:  7359
  • PDF Downloads:  348
  • Cited By: 0
Publishing process
  • Received Date:  18 February 2016
  • Accepted Date:  03 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回