Processing math: 100%

Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis

Liu Kun Zuo Jie Zhou Xiong-Feng Ran Cong-Fu Yang Ming-Hao Geng Wen-Qiang

Liu Kun, Zuo Jie, Zhou Xiong-Feng, Ran Cong-Fu, Yang Ming-Hao, Geng Wen-Qiang. Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis. Acta Phys. Sin., 2023, 72(5): 055201. doi: 10.7498/aps.72.20222236
Citation: Liu Kun, Zuo Jie, Zhou Xiong-Feng, Ran Cong-Fu, Yang Ming-Hao, Geng Wen-Qiang. Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis. Acta Phys. Sin., 2023, 72(5): 055201. doi: 10.7498/aps.72.20222236

Physico-chemical mechanism of surface dielectric barrier discharge product change based on spectral diagnosis

Liu Kun, Zuo Jie, Zhou Xiong-Feng, Ran Cong-Fu, Yang Ming-Hao, Geng Wen-Qiang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • To gain an insight into the interaction mechanism among the gaseous products of atmospheric pressure air plasma, a surface dielectric barrier discharge is used as a study object. The dynamic processes of characteristic products (nitric oxide NO and ozone O3) are measured by in-situ Fourier infrared spectroscopy and UV absorption spectroscopy. The real energy density of the plasma is calculated by Lissajous figure and ICCD optical image. The gas temperature is obtained by fitting the emission spectrum of the second positive band of the nitrogen molecule. The results show that the real energy density and gas temperature are highly positively correlated with the applied voltage and frequency. Higher applied voltages and frequencies can lead to lower peak absorbance of O3 and higher absorbance of NO, and accelerate the conversion of the products from O3-containing state into O3-free state. The microscopic mechanism of the product change is revealed by analyzing the effects of the real energy density and gas temperature on the major generation and quenching chemical reactions of the characteristic products. The analysis points out that there are two major reasons for the disappearance of O3, i.e. the quenching effect of O and O/O2 excited state particles on O3 and the quenching effect of NO on O3. And the mechanism that the disappearance of O3 accelerates with the increase of energy density and gas temperature, is as follows. The increase of real energy density means that the energy injected into the discharge region is enhanced, which intensifies the collision reaction, thereby producing more energetic electrons and reactive oxygen and nitrogen particles. Since the discharge cavity is gas-tight, the rapid generation of O leads to a rapid increase in the ratio of O to O2, which accelerates the decomposition of O3; besides, the gas temperature is raised due to the intensification of the collision reaction. Whereas the gas temperature can change the rate coefficients of the chemical reactions involving the excited state particles of nitrogen and oxygen to regulate the production and quenching of the products. The increase of gas temperature has a negative effect on O3. The higher the gas temperature, the lower the rate of O3 generation reaction is but the higher the rate of dissociation, which is thought to be the endogenous cause of the rapid disappearance of O3. In contrast, the gas temperature rising can significantly elevate the reaction rate of NO production and reduces its dissociation rate. This contributes to the faster production of massive NO, resulting in an accelerated quenching process of NO to O3, which can be considered as the exogenous cause of the rapid disappearance of O3. In a word, the present study contributes to a better understanding of the physico-chemical process in atmospheric pressure low-temperature plasma.
      PACS:
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51877021).

    大气压空气放电等离子体可以有效地产生大面积的活性氧粒子(reactive oxygen species)和活性氮粒子(reactive nitrogen species)[1-3], 在生物医学领域存在较大的应用潜力[4-6], 受到广泛关注. 特别是沿面介质阻挡放电(surface dielectric barrier discharge, SDBD)作为一种方便的、低成本的大气压等离子体源[7,8], 既能作为实验室研究的小型仪器[9], 也可以是大型工业应用中的医疗设备[10],具有放电电压较低、产生的微放电通道密度高、工作气体易获得等优势. 然而在SDBD等离子体应用中, 同时产生臭氧(O3)和氮氧化物(NOx)是一个不可避免的问题[11]. 为了满足特定的等离子体需求, 如加速伤口的愈合[12], 促进O3向NOx的快速转化是很关键的. 这是因为O3的强氧化性能造成细胞损伤和破坏人体的免疫机能, 而NOx不仅具有攻击病原体的能力[13,14], 其中的NO更是调节人体免疫系统的重要信号分子, 能诱导生物体转化生长因子基因表达, 促进创伤愈合[15]. 因此, 有必要掌握等离子体化学产物成分转化的微观物理-化学过程, 从而为产物调控提供理论基础.

    近年来, 关于SDBD气态产物的检测主要应用光谱法, 对产物变化的机理研究重点关注功率密度和气体温度. Shimizu等[16]和Pavlovich等[17]通过吸收光谱研究了功率密度对化学产物浓度的影响, 证实了足够高的功率密度会使产物从O3主导转变为NOx主导的模式. Park等[11]和Xi等[18]采用傅里叶红外光谱(FTIR)和吸收光谱测量了气体温度由低到高时, 其产物的变化. 结果表明, 气体温度越高, O3的峰值浓度越低, 峰值时刻出现越早. 以上研究表明功率密度和气体温度确实可以影响化学产物的变化. 但研究发现, 上述功率密度的计算是基于整个电极面积的假设[19], 不是等离子体放电的真实面积[20], 因此, 并不能很好地还原放电的真实性. 此外, 虽然大量研究证明了气体温度可以引起化学产物的变化, 但是关于气体温度是如何从微观层面调控等离子体化学反应从而影响产物变化的机理还需进一步分析.

    因此, 为深入理解等离子体产物的变化机理, 本文基于光谱诊断技术测量了等离子体化学产物、真实能量密度和气体温度随电压和频率的变化. 在此基础上分析了物理参数对关键化学反应及其速率系数的影响, 并揭示了产物变化的微观机理.

    大气压空气SDBD实验装置如图1(a)所示, 主要包括等离子体发生装置和相关的光学与电学检测仪器. 放电等离子体发生装置整体上以Al2O3陶瓷板为绝缘介质层, 面状钨电极和条状钨电极分别位于绝缘介质层两侧构成沿面介质阻挡放电结构, 其中条状钨电极接地, 面状钨电极连接电源作为高压电极. 单片SDBD装置的尺寸为90 mm×50 mm×1 mm, 包含一块面状钨电极(尺寸为80.0 mm×47.0 mm×0.2 mm)和9根条状钨电极(单个尺寸为76.0 mm×1.5 mm×0.2 mm, 相邻两根之间的距离为4 mm), 陶瓷板绝缘介质层厚度为0.6 mm. 为提高产物浓度, 两片SDBD装置并排放置在放电腔室内. 尺寸为120 mm×120 mm×70 mm的放电腔为气密室, 同时也是原位吸收池. 放电腔室主体材质是聚甲醛板, 在光路通过的两面各开有一个窗口. 高压电极供电部分采用自研的负反馈控制高压交流电源, 它可以提供稳定的正弦电压, 电压波动小于0.2 kV, 确保了实验结果的可重复性. 交流电源的输出电压的可调节范围为峰峰值0—26 kV, 频率范围为4—20 kHz. 实验中为了获得较稳定的放电, 放电参数在电压峰峰值5.5—7.0 kV, 频率6—10 kHz之间调节. 电压信号由高压探头(P6015A, Tektronix)采样, 电流信号通过低压探头(TPP0051, Tektronix)测量串联在电路中的100 Ω无感电阻上的电压得到, 测量信号均记录于数字示波器(GDS2304A, Gwinstek). 再利用李萨如图(Lissajous-Figure)法可以计算SDBD放电的放电功率[21]. 光学测量部分, SDBD放电形貌使用增强电荷耦合器件(ICCD, DH334T, Andor)拍摄. 氮分子第二正带N2(C3Πu→B3Πg, 0-0, 337.1 nm)的发射光谱由光栅光谱仪(MS7504i, SOL Instruments)分光获取, 然后利用Specair软件拟合其谱带可以得到相应的等离子体气体温度[22-25]. 图1(b)展示了放电施加电压6 kV和频率6 kHz时所得N2(C3Πu→B3Πg, 0-0, 337.1 nm)实验光谱与Specair软件中设置气体温度429 K时拟合光谱的对比图. 可以看到, 实验光谱与拟合光谱符合较好, 因此该放电条件下的等离子体气体温度即为429 K. 腔室中放电产生的NO通过原位FTIR (Nicolet iS50, Thermo Scientific)检测. O3原位吸收光谱[26]是通过氘灯(L6302-40, Hamamatsu)和光纤光谱仪(AvaSpec-UL2048, Avantes)在254 nm处测定的. 为了保证测量时对光透过率高的要求, FTIR测量时是在放电腔室的窗口安装溴化钾片, 氘灯吸收光谱测量和发射光谱测量时是在窗口安装石英玻璃片. 吸收光谱测量时的吸收光程为放电腔室的宽度 120 mm. 此外, 为了确保上次放电的残余物不影响下一次实验, 使用了真空泵和空气泵, 分别用于抽空残余的气态产物和吹入新鲜空气, 以尽量降低误差. 实验中的数据点结果均是3次测量取平均值.

    图 1 (a)实验装置; (b)气体温度拟合\r\nFig. 1. (a) Experimental setup; (b) gas temperature fitting.
    图 1  (a)实验装置; (b)气体温度拟合
    Fig. 1.  (a) Experimental setup; (b) gas temperature fitting.

    图2展示了放电参数为6 kHz, 6 kV时的原位FTIR随时间变化的动态测量结果, FTIR采样的时间间隔为5 s. 实验中FTIR检测到的SDBD化学产物主要包括N2O, N2O5, HNO3, O3, NO2, NO, 不同产物所对应的吸收峰波数, 如表1所示. 从图2可以看出, 随着放电时间的延长, N2O, N2O5, HNO3, NO2只是强度发生变化, 而O3和NO会出现有无的状态. 在放电开始后的10 s和40 s, 存在明显的O3吸收峰. 然而, 随着放电时间的推移, 当放电时间增加到70 s时, 发现O3已到达检测下限(臭氧中毒). O3消失的时刻被定义为产物完成转化的标志, 对应的标志性产物是NO. 而O3和NO则被看作是两种产物状态的特征产物. 此外, 在实验中还观察到产物变化的快慢与外加电压和频率相关.

    图 2 放电6 kHz, 6 kV条件时的原位FTIR结果\r\nFig. 2. In-situ FTIR results with discharge at 6 kHz, 6 kV.
    图 2  放电6 kHz, 6 kV条件时的原位FTIR结果
    Fig. 2.  In-situ FTIR results with discharge at 6 kHz, 6 kV.
    表 1  FTIR中不同物质对应的吸收峰波数
    Table 1.  Absorption peak wavenumber of differentspecies in FTIR.
    化学产物波数/cm–1
    N2O589, 1285, 2224, 2237
    N2O5743, 880, 1247, 1355, 1720
    HNO3762, 896, 1313, 1341, 1700
    O31030, 1043, 1055, 2098, 2121
    NO21600, 1621, 1627
    NO1876
    下载: 导出CSV 
    | 显示表格

    为了更直观地表现特征产物的转化过程, 图3给出了电压从5.5 kV增至7.0 kV和频率从6 kHz增至10 kHz的O3和NO的动态变化. 此处NO是通过等离子体原位FTIR的吸光强度表征, 而O3是通过254 nm处等离子体对氘灯原位吸收光谱的吸光强度表征. 虽然FTIR也能检测到O3, 但是当电压或频率增至一定数值后, O3的存在时间会变短. 因此为了更清晰地展示O3的变化趋势, 利用采样时间间隔更短的光纤光谱仪(本文设置的采样间隔时间为0.5 s)结合氘灯原位吸收光谱法对O3进行表征. 从图3均能观察到明显的O3中毒现象, 并且随着电压和频率的增大, O3的最大吸光度降低, 存在时间缩短, 即臭氧中毒的速度越来越快. 例如, 在6 kHz和5.5 kV时, O3的最大吸光度为3.026, 存在的时间为80 s. 当条件变为10 kHz和5.5 kV时, O3的最大吸光度降为1.056, 降低近66%. 此时O3存在的时间也缩短至为10 s. 而NO的变化规律与O3截然相反, 在O3消失后, NO开始被检测到. 并且电压和频率越高, NO出现的时间越早, 最大吸光度也就越高. 例如, 在6 kHz和5.5 kV时, NO的最大吸光度为0.003, 出现的时间为放电后80 s. 当条件变为10 kHz和5.5 kV时, NO的最大吸光度增至0.008, 增长近2倍. 此时NO出现的时间为放电后10 s, 出现速度提升了7倍.

    图 3 特征产物随电压和频率的变化\r\nFig. 3. Variation of the characteristic products with voltage and frequency.
    图 3  特征产物随电压和频率的变化
    Fig. 3.  Variation of the characteristic products with voltage and frequency.

    真实能量密度E (mJ/cm2)定义为每放电周期耗散能量与真实放电面积之比, 计算公式为

    E=P×T/S,
    (1)

    其中P表示功率(W), 由李萨如图法计算得到; T为电压周期(ms); S表示真实放电面积(cm2), 由MATLAB计算得到.

    图4为ICCD拍摄的不同放电条件下的放电图像, 其中电压从5.5 kV增至7.0 kV, 频率从6 kHz增至10 kHz. 由于(1)式中S表示单个放电周期内的放电面积, 因此ICCD拍摄的曝光时间是与放电施加的频率相对应. 例如, 频率6 kHz时的曝光时间为1/6000 s, 频率7 kHz时的曝光时间为1/7000 s. 对比图4(a)(d)图4(e)(f)可知, 随着电压或频率的增大, 图像中会出现更多亮度更高的点, 这代表放电强度的增强. 通过MATLAB程序对像素点计数获得了实际的放电面积, 结果如图5所示. 从图5可以看出, 放电面积与电压和频率呈相关. 此外, 图5还展示了不同放电条件下的耗散能量与电压和频率的关系, 可以发现其变化趋势与放电面积基本相同. 因此引入了真实能量密度进行统一表征, 用于反映注入单位放电面积的能量高低, 结果如图5所示, 能量密度也与电 压和频率呈正相关. 例如, 当固定电压为5.5 kV时, 随着频率从6 kHz升高至10 kHz时, 能量密度由0.128 mJ/cm2提升至0.179 mJ/cm2, 增幅为0.051 mJ/cm2. 当固定频率为6 kHz时, 随着电压从5.5 kV增至7.0 kV, 能量密度从0.128 mJ/cm2增至0.156 mJ/cm2, 增幅为0.028 mJ/cm2.

    图 4 SDBD放电图像 (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV\r\nFig. 4. SDBD discharge images: (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV.
    图 4  SDBD放电图像 (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV
    Fig. 4.  SDBD discharge images: (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV.
    图 5 放电面积、能量和能量密度随电压和频率的变化 (a)频率为变量; (b)电压为变量\r\nFig. 5. Variations of discharge area, energy and energy density with voltage and frequency: (a) Frequency as variable; (b) voltage as variable.
    图 5  放电面积、能量和能量密度随电压和频率的变化 (a)频率为变量; (b)电压为变量
    Fig. 5.  Variations of discharge area, energy and energy density with voltage and frequency: (a) Frequency as variable; (b) voltage as variable.

    图6(a), (b)分别为气体温度随电压和频率的变化结果. 可以看出, 气体温度与电压和频率呈高度的正相关. 例如, 当频率为6 kHz时, 随着电压从5.5 kV升至7 kV, 气体温度由409.50 K增至493.67 K, 增幅为84.17 K. 当电压设为5.5 kV, 随着频率由6 kHz升至10 kHz, 气体温度从409.50 K增至514.33 K, 增幅为104.83 K. 这与能量密度随电压和频率的变化规律基本一致. 随着外加电压的增大, 注入放电区域的能量增加, 环境分子(例如模拟气体温度用的激发态氮分子N2(C))和电子碰撞频繁使得能量传递过程加快, 分子热运动加剧, 气体温度增大. 随着频率的增大, 放电的热效应积累和正反馈效应也会导致气体温度升高.

    图 6 气体温度随电压和频率的变化 (a)电压为变量; (b)频率为变量\r\nFig. 6. Variation of gas temperature with voltage and frequency: (a) Voltage as variable; (b) frequency as variable.
    图 6  气体温度随电压和频率的变化 (a)电压为变量; (b)频率为变量
    Fig. 6.  Variation of gas temperature with voltage and frequency: (a) Voltage as variable; (b) frequency as variable.

    基于上述物理参数和化学产物的测量结果, 本节将从能量密度和气体温度对等离子体反应体系的影响揭示产物变化的微观机理. 等离子体化学反应体系极其复杂, 因此, 结合本文的工作和前人的研究[27-29], 筛选了特征产物的主要生成和猝灭反应进行分析.

    由于N2 (9.79 eV) 的解离能比O2 (5.12 eV)高[30,31], 等离子体中电子碰撞解离N2所需的能量高于解离O2所需能量[32]. 当电压和频率较低时, 能量密度较低, 高能电子数比较少, N2的碰撞解离反应(反应R1, 见表2)和碰撞激发反应(反应R2)较O2的碰撞解离反应(反应R3和R4)和碰撞激发反应(反应R5)更难发生, 并且此时的气体温度也较低. 因此, 主要以O2解离生成O及O的激发态粒子的反应为主, 这对放电初期O3(反应R6和R7)的生成是有利的, 正如图3所示O3的吸收值在放电一开始是上升的. 然而随着放电的持续, O及O的激发态粒子越来越多, O2浓度越来越低. 由于是气密环境, 当O与O2的比率超过一定值时, O会加剧O3的分解[33], 如反应R8和R9所示. 并且产生的O2(a), O(1D)等粒子的浓度也会增大, 而这些粒子又是O3的有效猝灭物质, 如反应R10—R12所示, 会继续促进O3的猝灭. 此外, 随着放电时间的持续, 活性氮粒子也会通过很多途径不断生成NO, 反应R14—R21所示. 但是由于前期O3浓度较高, 产生的NO会通过反应R13与O3充分反应. 这不仅进一步猝灭了O3, 还为放电初期检测不到NO提供了合理的解释. 也就是说, 当NO的有效猝灭物质O3完全消失时, NO才能被检测到, 并且此后NO的生成会大于消耗, 从而NO浓度随着时间的延长会累积的越来越高, 正如图3所示.

    表 2  空气放电中的主要化学反应
    Table 2.  Main chemical reactions in air discharge.
    化学反应速率系数k编号文献
    e + N2 → N(2D) + N + e3.99 × 10–17 ε2.24 exp(–9.10/ε)R1[27]
    e + N2 → N2(v) + eBOLSIG+R2[34]
    e + O2 → O + O + e2.03 × 10–14 ε–0.10 exp(–8.47/ε)R3[27]
    e + O2 →O(1D) + O + e1.82 × 10–14 ε–0.13 exp(–10.70/ε)R4[27]
    e + O2 → O2(a) + e1.04 × 10–15 exp(–2.59/ε)R5[27]
    O + O2+ N2 → O3 + N25.8 × 10–34 × (300/Tg)2.8R6[35]
    O + O2+ O2 → O3 + O27.6 × 10–34 × (300/Tg)1.9R7[35]
    O + O3 → O2 + O22 × 10–11 exp(–2300/Tg)R8[35]
    O + O3 → O2 + O2(a)2.0 × 10–11 exp(–2280/Tg)R9[34]
    O2(a) + O3 → O2 + O2 + O(1D)5.20 × 10–11 exp(–2480/Tg)R10[35]
    O2(a) + O3 → O + O2 + O25.20 × 10–11 exp(–2480/Tg)R11[35]
    O(1D) + O3 → O2 + O + O1.20 × 10–10R12[36]
    NO + O3 → O2 + NO24.30 × 10–12 exp(–1560/Tg)R13[36]
    O + NO2 → NO + O29.10 × 10–12 × (Tg/300)0.18R14[35]
    O + N2(v) → N + NO3.01 × 10–10 exp(–38370/Tg)R15[34]
    N + O3 → NO + O25.00 × 10–12 exp(–650/Tg)R16[34]
    N + O2 → O + NO1.0 × 10–11 × exp(–3473/Tg)R17[35]
    N + O2(a) → NO + O2.00 × 10–14 exp(–600/Tg)R18[35]
    N(2D) + O2 → NO + O1.50 × 10–12 exp(Tg/300)0.5R19[36]
    N(2D) + N2O → N2 + NO1.50 × 10–17 exp(–570/Tg)R20[27]
    N(2D) + O2 →NO + O(1D)6.00 × 10–12 exp(Tg/300)0.5R21[36]
    O + NO + N2 → NO2 + N21.20 × 10–31 × (300/Tg)1.7R22[35]
    O + NO + O2 → NO2 + O29.36 × 10–32 × (300/Tg)1.7R23[35]
    注: 二元反应和三元反应的速率系数单位分别为m3/s, m6/s.
    下载: 导出CSV 
    | 显示表格

    实验中随着电压和频率继续升高, 能量密度变大, 这意味着注入放电区域的能量变大, 碰撞电离加剧, 能快速地产生大量的高能电子, 并与O2和N2碰撞更快地产生更多的活性粒子. 由于O越来越快地生成, O和O2的比率上升得越来越快, 从而加快了O3的分解. 此外, 电子碰撞的加剧会引起气体温度的升高. 而根据反应R8—R11知, O及O2的激发态粒子对O3猝灭反应速率随气体温度的升高呈指数级快速增大, 说明气体温度的升高对O3的影响是不利的, 会加速O3的消失, 以上可以看作是O3消失越来越快的重要原因之一. 反观高能电子与N2碰撞反应, 由于N2在空气中占主导, 高能电子与其发生碰撞解离反应的概率很高, 这有助于活性氮粒子的快速和大量生成. 值得注意的是, 活性氮粒子参与的众多NO生成反应R14—R21的反应速率均与气体温度呈正相关, 即气体温度的升高会加速NO的大量生成. 此外, NO的猝灭反应R22和R23的速率与气体温度是负相关的, 即气体温度的升高又会抑制NO的分解. 总之, 气体温度的上升对大量NO的快速生成是有利的, 即气体温度越高, NO生成越快, 浓度也越高. 根据反应R13的速率系数知, NO猝灭O3的速率随气体温度的升高而快速增加, 因此能够进一步加快O3消失的速度, 这可以认为是O3消失越来越快的另一重要原因.

    通过光谱诊断方法研究了交流驱动的大气压空气SDBD产物变化的物理-化学机理. 实验发现, 在整个实验条件下, 随着放电参数从6 kV和5.5 kHz提高到10 kV和5.5 kHz时, 等离子体及其产物的特性会出现如下变化: 1) O3的最大吸光度从最高值3.026降到1.056, 下降近66%; 2) NO的吸光度从最低值0.003增至0.008, 增长近2倍; 3)产物完成转化所需要的时间由最长的80 s缩短至10 s, 速度提升了7倍; 4)真实能量密度从最小值0.128 mJ/cm2增至0.179 mJ/cm2, 增幅为0.051 mJ/cm2; 5) 气体温度从最低值409.50 K增至最大值514.33 K, 升高104.83 K. 据此结合等离子体化学反应及速率系数, 明确了真实能量密度和气体温度对产物变化的影响机理. 当真实能量密度变大时, 意味着注入放电区域的能量得到提升, 从而加剧碰撞反应产生更多的高能电子并与O2和N2碰撞产生活性氧和氮粒子. 由于放电是气密条件, O越来越快的生成导致O和O2的比值迅速增大, 从而加速了O3的分解; 此外, 由于碰撞反应的加强, 气体温度也会得到提升. 而气体温度可以改变氮和氧激发态粒子参与的化学反应的速率系数来调控产物的生成和猝灭的快慢. 气体温度的升高对O3有不利的影响. 气体温度越高, O3的生成反应速率越低, 但分解速率越高, 这可看作是O3消失得越来越快的内因. 反观NO, 气体温度的升高能显著提高其生成反应速率, 并抑制其解离速率. 这有助于大量NO更快地生成, 从而加速了NO对O3的猝灭进程, 这可认为是O3消失得越来越快的外因. 本文的研究为等离子体产物的调控提供了一定的理论基础.

    [1]

    Liu K, Hu Y, Lei J 2017 Phys. Plasmas 24 103513Google Scholar

    [2]

    商克峰, 王美威, 鲁娜, 姜楠, 李杰, 吴彦 2021 高电压技术 47 353Google Scholar

    Shang K F, Wang M W, Lu N, Jiang N, Li J, Wu Y 2021 High Volt. Eng. 47 353Google Scholar

    [3]

    王兴生, 马彦明, 高勋, 林景全 2020 物理学报 69 029502Google Scholar

    Wang X S, Ma Y M, Gao X, Lin J Q 2020 Acta Phys. Sin. 69 029502Google Scholar

    [4]

    Liu K, Zheng Z F, Liu S T, Hu Y Y 2019 Plasma Chem. Plasma Process. 39 1255Google Scholar

    [5]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [6]

    Pang B L, Liu Z J, Zhang H Y, Wang S T, Gao Y T, Xu D H, Liu D X, Kong M G 2022 Plasma Process. Polym. 19 e2100079Google Scholar

    [7]

    Zhao Z L, Wang W C, Yang D Z, Zhou X F, Yuan H 2019 IEEE Trans. Plasma Sci. 47 4219Google Scholar

    [8]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D Appl. Phys. 55 265202Google Scholar

    [9]

    Jiang N, Kong X Q, Lu X L, Peng B F, Liu Z Y, Li J, Shang K F, Lu N, Wu Y 2022 J. Clean. Prod. 332 129998Google Scholar

    [10]

    Dascalu A, Pohoata V, Shimizu K, Sirghi L 2021 Plasma Chem. Plasma Process. 41 389Google Scholar

    [11]

    Park S, Choe W, Jo C 2018 Chem. Eng. J. 352 1014Google Scholar

    [12]

    Douat C, Hubner S, Engeln R, Benedikt J 2016 Plasma Sources Sci. Technol. 25 025027Google Scholar

    [13]

    Qin H B, Qiu H J, He S T, Hong B X, Liu K, Lou F X, Li M C, Hu P, Kong X H, Song Y J, Liu Y C, Pu M F, Han P J, Li M Z, An X P, Song L H, Tong Y G, Fan H H, Wang R X 2022 J. Hazard. Mater. 430 128414Google Scholar

    [14]

    Wang S T, Liu Z J, Pang B L, Gao Y T, Luo S T, Li Q S, Chen H L, Kong M G 2022 Appl. Phys. Lett. 121 144101Google Scholar

    [15]

    Shimizu T, Ikehara 2017 J. Phys. D Appl. Phys. 50 503001Google Scholar

    [16]

    Shimizu T, Sakiyama Y, Graves D B, Zimmermann J L, Morfill G E 2012 New J. Phys. 14 103028Google Scholar

    [17]

    Pavlovich M J, Clark D S, Graves D B 2014 Plasma Sources Sci. Technol. 23 065036Google Scholar

    [18]

    Xi W, Wang W, Liu Z J, Wang Z F, Guo L, Wang X H, Rong M Z, Liu D X 2020 Plasma Sources Sci. Technol. 29 095013Google Scholar

    [19]

    Waskow A, Ibba L, Leftley M, Howling A, Ambrico P F, Furno I 2021 Int. J. Mol. Sci. 22 11540Google Scholar

    [20]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [21]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [22]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D:Appl. Phys. 54 065201Google Scholar

    [23]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [24]

    Liu K, Duan Q S, Zheng Z F, Zhou R S, Zhou R W, Tang W B, Cullen P, Ostrikov K 2021 Plasma Process. Polym. 18 2100016Google Scholar

    [25]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [26]

    高坤, 弓丹丹, 刘仁静, 苏泽华, 贾鹏英, 李雪辰 2020 光谱学与光谱分析 40 461Google Scholar

    Gao K, Gong D D, Liu R J, Su Z H, Jia P Y, Li X C 2020 Spectrosc. Spect. Anal. 40 461Google Scholar

    [27]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D Appl. Phys. 45 425201Google Scholar

    [28]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001Google Scholar

    [29]

    李森, 王小兵, 马婷婷, 李栋, 戴健男 2021 真空科学与技术学报 41 619Google Scholar

    Li S, Wang X B, Ma T T, Li D, Dai J N 2021 Chin. J. Vac. Sci. Technol. 41 619Google Scholar

    [30]

    Yin S E, Sun B M, Gao X D, Xiao H P 2009 Plasma Chem. Plasma Process. 29 421Google Scholar

    [31]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process. Polym. 16 e1900001Google Scholar

    [32]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 物理学报 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [33]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [34]

    Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A 2020 ACS Sustainale Chem. Eng. 8 9711Google Scholar

    [35]

    Gordillo-Vazquez F J 2008 J. Phys. D Appl. Phys. 41 234016Google Scholar

    [36]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • 图 1  (a)实验装置; (b)气体温度拟合

    Figure 1.  (a) Experimental setup; (b) gas temperature fitting.

    图 2  放电6 kHz, 6 kV条件时的原位FTIR结果

    Figure 2.  In-situ FTIR results with discharge at 6 kHz, 6 kV.

    图 3  特征产物随电压和频率的变化

    Figure 3.  Variation of the characteristic products with voltage and frequency.

    图 4  SDBD放电图像 (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV

    Figure 4.  SDBD discharge images: (a) 6 kHz, 5.5 kV; (b) 6 kHz, 6.0 kV; (c) 6 kHz, 6.5 kV; (d) 6 kHz, 7.0 kV; (e) 7 kHz, 5.5 kV; (f) 8 kHz, 5.5 kV; (g) 9 kHz, 5.5 kV; (h) 10 kHz, 5.5 kV.

    图 5  放电面积、能量和能量密度随电压和频率的变化 (a)频率为变量; (b)电压为变量

    Figure 5.  Variations of discharge area, energy and energy density with voltage and frequency: (a) Frequency as variable; (b) voltage as variable.

    图 6  气体温度随电压和频率的变化 (a)电压为变量; (b)频率为变量

    Figure 6.  Variation of gas temperature with voltage and frequency: (a) Voltage as variable; (b) frequency as variable.

    表 1  FTIR中不同物质对应的吸收峰波数

    Table 1.  Absorption peak wavenumber of differentspecies in FTIR.

    化学产物波数/cm–1
    N2O589, 1285, 2224, 2237
    N2O5743, 880, 1247, 1355, 1720
    HNO3762, 896, 1313, 1341, 1700
    O31030, 1043, 1055, 2098, 2121
    NO21600, 1621, 1627
    NO1876
    DownLoad: CSV

    表 2  空气放电中的主要化学反应

    Table 2.  Main chemical reactions in air discharge.

    化学反应速率系数k编号文献
    e + N2 → N(2D) + N + e3.99 × 10–17 ε2.24 exp(–9.10/ε)R1[27]
    e + N2 → N2(v) + eBOLSIG+R2[34]
    e + O2 → O + O + e2.03 × 10–14 ε–0.10 exp(–8.47/ε)R3[27]
    e + O2 →O(1D) + O + e1.82 × 10–14 ε–0.13 exp(–10.70/ε)R4[27]
    e + O2 → O2(a) + e1.04 × 10–15 exp(–2.59/ε)R5[27]
    O + O2+ N2 → O3 + N25.8 × 10–34 × (300/Tg)2.8R6[35]
    O + O2+ O2 → O3 + O27.6 × 10–34 × (300/Tg)1.9R7[35]
    O + O3 → O2 + O22 × 10–11 exp(–2300/Tg)R8[35]
    O + O3 → O2 + O2(a)2.0 × 10–11 exp(–2280/Tg)R9[34]
    O2(a) + O3 → O2 + O2 + O(1D)5.20 × 10–11 exp(–2480/Tg)R10[35]
    O2(a) + O3 → O + O2 + O25.20 × 10–11 exp(–2480/Tg)R11[35]
    O(1D) + O3 → O2 + O + O1.20 × 10–10R12[36]
    NO + O3 → O2 + NO24.30 × 10–12 exp(–1560/Tg)R13[36]
    O + NO2 → NO + O29.10 × 10–12 × (Tg/300)0.18R14[35]
    O + N2(v) → N + NO3.01 × 10–10 exp(–38370/Tg)R15[34]
    N + O3 → NO + O25.00 × 10–12 exp(–650/Tg)R16[34]
    N + O2 → O + NO1.0 × 10–11 × exp(–3473/Tg)R17[35]
    N + O2(a) → NO + O2.00 × 10–14 exp(–600/Tg)R18[35]
    N(2D) + O2 → NO + O1.50 × 10–12 exp(Tg/300)0.5R19[36]
    N(2D) + N2O → N2 + NO1.50 × 10–17 exp(–570/Tg)R20[27]
    N(2D) + O2 →NO + O(1D)6.00 × 10–12 exp(Tg/300)0.5R21[36]
    O + NO + N2 → NO2 + N21.20 × 10–31 × (300/Tg)1.7R22[35]
    O + NO + O2 → NO2 + O29.36 × 10–32 × (300/Tg)1.7R23[35]
    注: 二元反应和三元反应的速率系数单位分别为m3/s, m6/s.
    DownLoad: CSV
  • [1]

    Liu K, Hu Y, Lei J 2017 Phys. Plasmas 24 103513Google Scholar

    [2]

    商克峰, 王美威, 鲁娜, 姜楠, 李杰, 吴彦 2021 高电压技术 47 353Google Scholar

    Shang K F, Wang M W, Lu N, Jiang N, Li J, Wu Y 2021 High Volt. Eng. 47 353Google Scholar

    [3]

    王兴生, 马彦明, 高勋, 林景全 2020 物理学报 69 029502Google Scholar

    Wang X S, Ma Y M, Gao X, Lin J Q 2020 Acta Phys. Sin. 69 029502Google Scholar

    [4]

    Liu K, Zheng Z F, Liu S T, Hu Y Y 2019 Plasma Chem. Plasma Process. 39 1255Google Scholar

    [5]

    高书涵, 王绪成, 张远涛 2020 物理学报 69 115204Google Scholar

    Gao S H, Wang X C, Zhang Y T 2020 Acta Phys. Sin. 69 115204Google Scholar

    [6]

    Pang B L, Liu Z J, Zhang H Y, Wang S T, Gao Y T, Xu D H, Liu D X, Kong M G 2022 Plasma Process. Polym. 19 e2100079Google Scholar

    [7]

    Zhao Z L, Wang W C, Yang D Z, Zhou X F, Yuan H 2019 IEEE Trans. Plasma Sci. 47 4219Google Scholar

    [8]

    Peng B F, Jiang N, Shang K F, Lu N, Li J, Wu Y 2022 J. Phys. D Appl. Phys. 55 265202Google Scholar

    [9]

    Jiang N, Kong X Q, Lu X L, Peng B F, Liu Z Y, Li J, Shang K F, Lu N, Wu Y 2022 J. Clean. Prod. 332 129998Google Scholar

    [10]

    Dascalu A, Pohoata V, Shimizu K, Sirghi L 2021 Plasma Chem. Plasma Process. 41 389Google Scholar

    [11]

    Park S, Choe W, Jo C 2018 Chem. Eng. J. 352 1014Google Scholar

    [12]

    Douat C, Hubner S, Engeln R, Benedikt J 2016 Plasma Sources Sci. Technol. 25 025027Google Scholar

    [13]

    Qin H B, Qiu H J, He S T, Hong B X, Liu K, Lou F X, Li M C, Hu P, Kong X H, Song Y J, Liu Y C, Pu M F, Han P J, Li M Z, An X P, Song L H, Tong Y G, Fan H H, Wang R X 2022 J. Hazard. Mater. 430 128414Google Scholar

    [14]

    Wang S T, Liu Z J, Pang B L, Gao Y T, Luo S T, Li Q S, Chen H L, Kong M G 2022 Appl. Phys. Lett. 121 144101Google Scholar

    [15]

    Shimizu T, Ikehara 2017 J. Phys. D Appl. Phys. 50 503001Google Scholar

    [16]

    Shimizu T, Sakiyama Y, Graves D B, Zimmermann J L, Morfill G E 2012 New J. Phys. 14 103028Google Scholar

    [17]

    Pavlovich M J, Clark D S, Graves D B 2014 Plasma Sources Sci. Technol. 23 065036Google Scholar

    [18]

    Xi W, Wang W, Liu Z J, Wang Z F, Guo L, Wang X H, Rong M Z, Liu D X 2020 Plasma Sources Sci. Technol. 29 095013Google Scholar

    [19]

    Waskow A, Ibba L, Leftley M, Howling A, Ambrico P F, Furno I 2021 Int. J. Mol. Sci. 22 11540Google Scholar

    [20]

    万海容, 郝艳捧, 房强, 苏恒炜, 阳林, 李立浧 2020 物理学报 69 145203Google Scholar

    Wan H R, Hao Y P, Fang Q, Su H W, Yang L, Li L C 2020 Acta Phys. Sin. 69 145203Google Scholar

    [21]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [22]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D:Appl. Phys. 54 065201Google Scholar

    [23]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [24]

    Liu K, Duan Q S, Zheng Z F, Zhou R S, Zhou R W, Tang W B, Cullen P, Ostrikov K 2021 Plasma Process. Polym. 18 2100016Google Scholar

    [25]

    Liu K, Lei J, Zheng Z, Zhu Z, Liu S 2018 Appl. Surf. Sci. 458 183Google Scholar

    [26]

    高坤, 弓丹丹, 刘仁静, 苏泽华, 贾鹏英, 李雪辰 2020 光谱学与光谱分析 40 461Google Scholar

    Gao K, Gong D D, Liu R J, Su Z H, Jia P Y, Li X C 2020 Spectrosc. Spect. Anal. 40 461Google Scholar

    [27]

    Sakiyama Y, Graves D B, Chang H W, Shimizu T, Morfill G E 2012 J. Phys. D Appl. Phys. 45 425201Google Scholar

    [28]

    Park G Y, Park S J, Choi M Y, Koo I G, Byun J H, Hong J W, Sim J Y, Collins G J, Lee J K 2012 Plasma Sources Sci. Technol. 21 043001Google Scholar

    [29]

    李森, 王小兵, 马婷婷, 李栋, 戴健男 2021 真空科学与技术学报 41 619Google Scholar

    Li S, Wang X B, Ma T T, Li D, Dai J N 2021 Chin. J. Vac. Sci. Technol. 41 619Google Scholar

    [30]

    Yin S E, Sun B M, Gao X D, Xiao H P 2009 Plasma Chem. Plasma Process. 29 421Google Scholar

    [31]

    Zhou X F, Zhao Z L, Liang J P, Yuan H, Wang W C, Yang D Z 2019 Plasma Process. Polym. 16 e1900001Google Scholar

    [32]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 物理学报 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [33]

    Eliasson B, Hirth M, Kogelschatz U 1987 J. Phys. D Appl. Phys. 20 1421Google Scholar

    [34]

    Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A 2020 ACS Sustainale Chem. Eng. 8 9711Google Scholar

    [35]

    Gordillo-Vazquez F J 2008 J. Phys. D Appl. Phys. 41 234016Google Scholar

    [36]

    Kossyi I A, Kostinsky A Y, Matveyev A A, Silakov V P 1992 Plasma Sources Sci. Technol. 1 207Google Scholar

  • [1] Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia. Study on the forward of mashgas CO temperature and concentration by the remote passive measurement. Acta Physica Sinica, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [2] Lan Li-Juan, Ding Yan-Jun, Jia Jun-Wei, Du Yan-Jun, Peng Zhi-Min. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [3] Song Jun-Ling, Hong Yan-Ji, Wang Guang-Yu, Pan Hu. Two-dimensional reconstructions of gas temperature and concentration in combustion based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [4] Dong Li-Fang, Li Shu-Feng, Fan Wei-Li. Defects in transition between different filament structures in dielectric barrier discharge. Acta Physica Sinica, 2011, 60(6): 065205. doi: 10.7498/aps.60.065205
    [5] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [6] Dong Li-Fang, Liu Wei-Yuan, Yang Yu-Jie, Wang Shuai, Ji Ya-Fei. Spectral diagnostics of electron density of plasma torch at atmospheric pressure. Acta Physica Sinica, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [7] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [8] Wang Li-Ming, Liang Zhuo, Guan Zhi-Cheng, Luo Hai-Yun, Wang Xin-Xin. Influences of gas flow on gas temperature and discharge mode in dielectric barrier discharge of nitrogen at atmospheric pressure. Acta Physica Sinica, 2010, 59(12): 8739-8746. doi: 10.7498/aps.59.8739
    [9] Dong Li-Fang, Yang Li, Li Yong-Hui, Zhang Yan-Zhao, Yue Han. Spatial distributions of the intensity of luminescence and the vibrational temperature of single micro-discharge channel in air dielectric barrier discharge. Acta Physica Sinica, 2009, 58(12): 8461-8466. doi: 10.7498/aps.58.8461
    [10] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [11] Tong Kai, Cui Wei-Wei, Wang Mei-Ting, Li Zhi-Quan. Temperature measurement with one dimensional defect photonic crystal. Acta Physica Sinica, 2008, 57(2): 762-766. doi: 10.7498/aps.57.762
    [12] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [13] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [15] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [16] Liu Yan-Hong, Zhang Jia-Liang, Wang Wei-Guo, Li Jian, Liu Dong-Ping, Ma Teng-Cai. Deposition of diamond-like carbon and analysis of ion energy in CH4 or CH4+Ar dielectric barrier discharge plasma. Acta Physica Sinica, 2006, 55(3): 1458-1463. doi: 10.7498/aps.55.1458
    [17] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
    [18] Yin Zeng-Qian, Wang Long, Dong Li-Fang, Li Xue-Chen, Chai Zhi-Fang. The mapping equation of micro-discharge in dielectric barrier discharges. Acta Physica Sinica, 2003, 52(4): 929-934. doi: 10.7498/aps.52.929
    [19] CHENG CHENG, SUN WEI. RADIAL DISTRIBUTION AND TIME VARIATION OF GAS TEMPERATURE IN CuBr LASERS. Acta Physica Sinica, 1993, 42(11): 1779-1785. doi: 10.7498/aps.42.1779
    [20] ZHANG CAI-GEN. THE MEASUREMENT OF THE TRUE SURFACE TEMPERATURE VIA THE BRIGHTNESS METHOD. Acta Physica Sinica, 1982, 31(9): 1191-1197. doi: 10.7498/aps.31.1191
Metrics
  • Abstract views:  4539
  • PDF Downloads:  117
Publishing process
  • Received Date:  23 November 2022
  • Accepted Date:  22 December 2022
  • Available Online:  29 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回