Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma

Li Wen-Qiu Tang Yan-Na Liu Ya-Lin Wang Gang

Citation:

Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma

Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang
PDF
HTML
Get Citation
  • As the core issue in helicon discharge, the physical mechanism behind the high ionization rate phenomenon is still not fully understood. Based on the warm plasma dielectric tensor model which contains both the particle drift velocity and temperature anisotropy effect, by employing the general dispersion relation of electromagnetic waves propagating in magnetized and uniform plasma with typical helicon discharge parameter conditions, wave mode propagation characteristic and collisional, cyclotron and Landua damping induced wave power deposition properties of azimuthally symmetric mode are theoretically investigated. Systematic analysis shows the following findings. 1) Under typical helicon plasma parameter conditions, i.e. wave frequency ω/(2π)=13.56 MHz, ion temperature is one tenth of the electron temperature, and for a given magnetic field B0 (or wave frequency ω), there exists a critical wave frequency ωcr (or magnetic field B0,cr), above which (or below B0,cr) the damping of the n = 1, 2, 3 cyclotron harmonics begins to increase sharply. 2) For the electron temperature isotropic case, the attenuation constants of different harmonics start to increase significantly and monotonically at different thresholds of magnetic field, while the phase constant abruptly increases monotonically from the beginning of the parameter interval. On the other hand, for the electron temperature anisotropic case, both the phase constant and attenuation constant have peaking phenomenon, i.e. the attenuation constant begins to increase sharply at a certain value of B0 and meanwhile the phase constant presents a maximum value near the same value of magnetic field, thus the phase constant starts to keep constant at a certain value of B0 and meanwhile the attenuation constant has a maximum value near this same value of magnetic field. 3) For the wave power deposition properties, under electron temperature anisotropy conditions, power deposition due to collisional damping of Trivelpiece-Gould (TG) wave plays a dominant role in a low field (B0 = 48 Gs) (1 Gs = 10–4 T); by considering the electron finite Larmor radius (FLR) effect, the power deposition of TG wave presents a maximum value at a certain point of parallel electron temperature Te,//; with the decrease of Te,⊥/Te,//, the maximum value of power deposition increases gradually. All these findings are very important in further revealing the physical mechanism behind the high ionization rate in helicon plasma.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Key Laboratory of Science and Technology on High Power Microwave Sources and Technologies, Aerospace Information Research Institude , Chinese Academy of Sciences (Grant No. Y9D0260H93).
    [1]

    Varughese G, Kumari J, Pandey RS, et al. 2018 J. Mod. Appl. Phys. 2 13

    [2]

    Omura Y, Summers D 2006 J. Geophys. Res. Space Phys. 111 A09222

    [3]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 物理学报 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [4]

    傅绥燕, 徐寄遥, 魏勇, 刘立波, 熊明, 曹晋滨, 宗秋刚, 王赤, 冯学尚, 史全岐, 师立勤, 任丽文 2019 中国科学: 地球科学 49 1641

    Fu S Y, Xu J Y, Wei Y, Liu L B, Xiong M, Cao J B, Zong Q G, Wang C, Feng X S, Shi Q Q, Shi L Q, Ren L W 2019 Sci. Sin. Terrae 49 1641

    [5]

    Caneses J F, Blackwell B D 2016 Plasma Sources Sci. Technol. 25 055027Google Scholar

    [6]

    Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar

    [7]

    Shinohara S 2018 Adv. Phys. X 3 1420424

    [8]

    Shinohara S, Hada T, Motomura T, et al. 2009 Phys. Plasmas 16 057104Google Scholar

    [9]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245Google Scholar

    [10]

    Squire J P, Chang-Diaz F R, Jacobson V T, et al. 2003 AIP Conference Proceedings for the 15th Topical Conference on Radio Frequency Power in Plasmas Moran, May 19–21, 2003 p423

    [11]

    Squire J P, Chang-Díaz F R, Glover T W, et al. 2006 Thin Solid Films 506 579

    [12]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [13]

    Bathgate S N, Bilek M M M, Mckenzie D R 2017 Plasma Sci. Technol. 19 083001Google Scholar

    [14]

    Furukawa T, Kuwahara D, Shinohara S 2020 AIAA Propulsion and Energy Forum New Orleans, August 24–26, 2020 p3630

    [15]

    Liu X, Sun X, Guo N, et al. 2022 IEEE Trans. Plasma Sci. 7 2138

    [16]

    Polzin K, Martin A, Little J, et al. 2020 Aerospace 7 105Google Scholar

    [17]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 310Google Scholar

    [18]

    Takahashi K, Motomura T, Ando A, et al. 2014 J. Phys. D Appl. Phys. 47 425201Google Scholar

    [19]

    Smyrnakis A, Dimitrakis P, Gogolides E 2018 J. Phys. D Appl. Phys. 51 455101Google Scholar

    [20]

    Goulding R H, Caughman J B O, Rapp J, et al. 2017 Fusion Sci. Technol. 72 588Google Scholar

    [21]

    Ivanov A A, Davydenko V I, Kotelnikov I A, et al. 2013 Fusion Sci. Technol. 63 217Google Scholar

    [22]

    Goulding R H, Biewer T M, Caughman J B O, et al. 2011 AIP Conference Proceedings for the 19th Topical Conference on Radio Frequency Power in Plasmas Rhode Island, June 1–3, 2011 p535

    [23]

    Goulding R H, Chen G, Meitner S, et al. 2009 AIP Conference Proceedings for the 18th Topical Conference on Radio Frequency Power in Plasmas Belgium, June 24–26, 2009 p667

    [24]

    Isayama S, Shinohara S, Hada T, et al. 2019 Phys. Plasmas 26 023517Google Scholar

    [25]

    Shinohara S 2002 J. Plasma Fusion Res. 78 5Google Scholar

    [26]

    Chen F F, Torreblanca H 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [27]

    Tarey R D, Sahu B B, Ganguli A 2012 Phys. Plasmas 19 073520Google Scholar

    [28]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar

    [29]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar

    [30]

    Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar

    [31]

    Kline J L, Scime E E, Boivin R F, et al. 2002 Phys. Rev. Lett. 88 195002Google Scholar

    [32]

    Eom G S, Kim J, Choe W 2006 Phys. Plasmas 13 073505Google Scholar

    [33]

    Cho S 2020 Plasma Sources Sci. Technol. 29 095023Google Scholar

    [34]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [35]

    平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, Xu G S, Chang L, Wu D S, Lü H, Zheng C Y, Peng J H, Jin H H, He C, Gan G H 2019 Acta Phys. Sin. 68 205201Google Scholar

    [36]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [37]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, July 25–27, 2016 p5035

    [38]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [39]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [40]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [41]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [42]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [43]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [44]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

  • 图 1  螺旋波等离子体柱示意图

    Figure 1.  Cross section of helicon plasma column.

    图 2  Whistler波色散特性

    Figure 2.  Dispersion characteristic of whistler wave.

    图 3  电子温度各向异性对Whistler波n = 1次回旋谐波传播常数的影响 (实线代表相位常数, 虚线代表衰减常数)

    Figure 3.  Effect of electron temperature anisotropy on the propagation characteristic of the n = 1 electron cyclotron harmonic (the solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 4  电子温度各向同性情形下n=1, 2, 3 次回旋谐波传播常数对纵向静磁场的依赖关系 (实线代表相位常数, 虚线代表衰减常数)

    Figure 4.  Dependence of propagation characteristic of the n=1, 2, 3 electron cyclotron harmonics on magnetic field in the case of electron temperature isotropy (the solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 5  电子温度各向异性情形下n = 1, 2, 3次回旋谐波传播常数对纵向静磁场的依赖关系 (实线代表相位常数, 虚线代表衰减常数)

    Figure 5.  Dependence of propagation characteristic of the n = 1, 2, 3 electron cyclotron harmonics on magnetic field in the case of electron temperature anisotropy (The solid lines represent the phase constant, and the dashed lines represent the attenuation constant).

    图 6  n = 1, 2, 3次回旋谐波衰减常数随 (a) 电子温度各向异性和 (b) 电子纵向漂移速度的依赖关系

    Figure 6.  Dependence of attenuation constant of the n = 1, 2, 3 electron cyclotron harmonics on (a) the electron temperature anisotropy and (b) electron parallel drift velocity.

    图 7  螺旋波与TG波有限拉莫尔半径效应因子随归一化静磁场的变化关系

    Figure 7.  Dependence of the FLR effect parameter of helicon and TG waves on the normalized static magnetic field.

    图 8  波功率沉积随纵向电子温度的变化

    Figure 8.  Wave power deposition versus parallel electron temperature.

    图 9  螺旋波碰撞阻尼产生的功率沉积径向分布 (a) Te,⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/Te,// = 10

    Figure 9.  Collisional damping induced radial power deposition distribution of the helicon wave: (a) Te, ⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/ Te,// = 10.

    图 10  TG波碰撞阻尼产生的功率沉积径向分布 (a) Te,⊥/Te, // = 0.1; (b) Te,/Te,// = 1; (c) Te,/Te,// = 10

    Figure 10.  Collisional damping induced radial power deposition distribution of the TG wave: (a) Te,⊥/Te,// = 0.1; (b) Te,/Te, // = 1; (c) Te,/Te, // = 10.

    图 11  TG 波功率沉积在$({T_{{\text{e}}, //}}, {\text{ }}{T_{{\text{e}}, \bot }}/{T_{{\text{e}}, //}})$空间的分布 (a) 三维分布; (b) 二维分布

    Figure 11.  $({T_{{\text{e}}, //}}, {\text{ }}{T_{{\text{e}}, \bot }}/{T_{{\text{e}}, //}})$ space power deposition distribution of TG wave: (a) 3D; (b) 2D.

    表 1  色散关系元素

    Table 1.  Elements of dispersion relation.

    ${\varPi _{su} }$u = 1u = 2u = 3
    s = 1$ {{\text{J}}_m}({k_{ \bot m, {\text{H}}}}a) $$ {{\text{J}}_m}({k_{ \bot m, {\text{TG}}}}a) $$ - {\text{j}}{k_{ \bot m, v}}{\text{H}}_m^{(1)}({k_{ \bot m, v}}a) $
    s = 2$\begin{gathered} k_{ \bot m, {\text{TG} } }^2\left[ {m{k_{//, m} }{ {\text{J} }_m}({k_{ \bot m, {\text{H} } } }a) } \right. \\ \left. +{ {k_{\text{H} } }{k_{ \bot m, {\text{H} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{H} } } }a)} \right] \\ \end{gathered}$$\begin{gathered} k_{ \bot m, {\text{H} } }^2\left[ {m{k_{//, m} }{ {\text{J} }_m}({k_{ \bot m, {\text{TG} } } }a) } \right. \\ \left. +{ {k_{\text{H} } }{k_{ \bot m, {\text{TG} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{TG} } } }a)} \right] \\ \end{gathered}$$ {\text{j}}k_{ \bot m, {\text{H}}}^2 k_{ \bot m, {\text{TG}}}^2 m{\text{H}}_m^{(1)}({k_{ \bot m, v}}a) $
    s = 3$\begin{gathered} k_{ \bot m, {\text{TG} } }^2\left[ {m{k_{\text{H} } }{ {\text{J} }_m}({k_{ \bot m, {\text{H} } } }a) } \right. \\ \left. +{ {k_{//, m} }{k_{ \bot m, {\text{H} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{H} } } }a)} \right] \\ \end{gathered}$$\begin{gathered} k_{ \bot m, {\text{H} } }^2\left[ {m{k_{ {\text{TG} } } }{ {\text{J} }_m}({k_{ \bot m, {\text{TG} } } }a) } \right. \\ \left. +{ {k_{//, m} }{k_{ \bot m, {\text{TG} } } }a{ {\text{J} }_m'} ({k_{ \bot m, {\text{TG} } } }a)} \right] \\ \end{gathered}$${\text{j} }k_{ \bot {m}, {\text{H} } }^2 k_{ \bot {m}, {\text{TG} } }^2 {k_{ \bot {m}, v} }a{\text{H}_m^{(1)' }}({k_{ \bot {m}, v} }a)$
    DownLoad: CSV
  • [1]

    Varughese G, Kumari J, Pandey RS, et al. 2018 J. Mod. Appl. Phys. 2 13

    [2]

    Omura Y, Summers D 2006 J. Geophys. Res. Space Phys. 111 A09222

    [3]

    倪彬彬, 赵正予, 顾旭东, 汪枫 2008 物理学报 57 7937Google Scholar

    Ni B B, Zhao Z Y, Gu X D, Wang F 2008 Acta Phys. Sin. 57 7937Google Scholar

    [4]

    傅绥燕, 徐寄遥, 魏勇, 刘立波, 熊明, 曹晋滨, 宗秋刚, 王赤, 冯学尚, 史全岐, 师立勤, 任丽文 2019 中国科学: 地球科学 49 1641

    Fu S Y, Xu J Y, Wei Y, Liu L B, Xiong M, Cao J B, Zong Q G, Wang C, Feng X S, Shi Q Q, Shi L Q, Ren L W 2019 Sci. Sin. Terrae 49 1641

    [5]

    Caneses J F, Blackwell B D 2016 Plasma Sources Sci. Technol. 25 055027Google Scholar

    [6]

    Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar

    [7]

    Shinohara S 2018 Adv. Phys. X 3 1420424

    [8]

    Shinohara S, Hada T, Motomura T, et al. 2009 Phys. Plasmas 16 057104Google Scholar

    [9]

    Chen F F, Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245Google Scholar

    [10]

    Squire J P, Chang-Diaz F R, Jacobson V T, et al. 2003 AIP Conference Proceedings for the 15th Topical Conference on Radio Frequency Power in Plasmas Moran, May 19–21, 2003 p423

    [11]

    Squire J P, Chang-Díaz F R, Glover T W, et al. 2006 Thin Solid Films 506 579

    [12]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [13]

    Bathgate S N, Bilek M M M, Mckenzie D R 2017 Plasma Sci. Technol. 19 083001Google Scholar

    [14]

    Furukawa T, Kuwahara D, Shinohara S 2020 AIAA Propulsion and Energy Forum New Orleans, August 24–26, 2020 p3630

    [15]

    Liu X, Sun X, Guo N, et al. 2022 IEEE Trans. Plasma Sci. 7 2138

    [16]

    Polzin K, Martin A, Little J, et al. 2020 Aerospace 7 105Google Scholar

    [17]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 9 310Google Scholar

    [18]

    Takahashi K, Motomura T, Ando A, et al. 2014 J. Phys. D Appl. Phys. 47 425201Google Scholar

    [19]

    Smyrnakis A, Dimitrakis P, Gogolides E 2018 J. Phys. D Appl. Phys. 51 455101Google Scholar

    [20]

    Goulding R H, Caughman J B O, Rapp J, et al. 2017 Fusion Sci. Technol. 72 588Google Scholar

    [21]

    Ivanov A A, Davydenko V I, Kotelnikov I A, et al. 2013 Fusion Sci. Technol. 63 217Google Scholar

    [22]

    Goulding R H, Biewer T M, Caughman J B O, et al. 2011 AIP Conference Proceedings for the 19th Topical Conference on Radio Frequency Power in Plasmas Rhode Island, June 1–3, 2011 p535

    [23]

    Goulding R H, Chen G, Meitner S, et al. 2009 AIP Conference Proceedings for the 18th Topical Conference on Radio Frequency Power in Plasmas Belgium, June 24–26, 2009 p667

    [24]

    Isayama S, Shinohara S, Hada T, et al. 2019 Phys. Plasmas 26 023517Google Scholar

    [25]

    Shinohara S 2002 J. Plasma Fusion Res. 78 5Google Scholar

    [26]

    Chen F F, Torreblanca H 2007 Plasma Sources Sci. Technol. 16 593Google Scholar

    [27]

    Tarey R D, Sahu B B, Ganguli A 2012 Phys. Plasmas 19 073520Google Scholar

    [28]

    Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar

    [29]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar

    [30]

    Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar

    [31]

    Kline J L, Scime E E, Boivin R F, et al. 2002 Phys. Rev. Lett. 88 195002Google Scholar

    [32]

    Eom G S, Kim J, Choe W 2006 Phys. Plasmas 13 073505Google Scholar

    [33]

    Cho S 2020 Plasma Sources Sci. Technol. 29 095023Google Scholar

    [34]

    赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202Google Scholar

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202Google Scholar

    [35]

    平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华 2019 物理学报 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, Xu G S, Chang L, Wu D S, Lü H, Zheng C Y, Peng J H, Jin H H, He C, Gan G H 2019 Acta Phys. Sin. 68 205201Google Scholar

    [36]

    Guo X M, Scharer J, Mouzouris Y, et al. 1999 Phys. Plasmas 6 3400Google Scholar

    [37]

    Correyero Plaza S, Navarro J, Ahedo E 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conference Salt Lake City, July 25–27, 2016 p5035

    [38]

    Swanson D G 1989 Plasma Waves (New York: Academic Press) p155

    [39]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [40]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [41]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: The Hilbert Transform of the Gaussian (New York: Academic Press) p1

    [42]

    Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [43]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [44]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic. Acta Physica Sinica, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] Zhang Gao-Jian, Wang Yi-Pu. Observation of the anisotropic exceptional point in cavity magnonics system. Acta Physica Sinica, 2020, 69(4): 047103. doi: 10.7498/aps.69.20191632
    [4] Li Wen-Qiu, Zhao Bin, Wang Gang, Xiang Dong. Parametric analysis of mode coupling and liner energy deposition properties of helicon and Trivelpiece-Gould waves in helicon plasma. Acta Physica Sinica, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [5] Li Wen-Qiu, Zhao Bin, Wang Gang. Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma. Acta Physica Sinica, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [6] Ping Lan-Lan, Zhang Xin-Jun, Yang Hua, Xu Guo-Sheng, Chang Lei, Wu Dong-Sheng, Lü Hong, Zheng Chang-Yong, Peng Jin-Hua, Jin Hai-Hong, He Chao, Gan Gui-Hua. Optimal design of helicon wave antenna and numerical investigation into power deposition on helicon physics prototype experiment. Acta Physica Sinica, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [7] Sun Mei, Zhou Shi-Hong, Li Zheng-Lin. Analysis of sound propagation in the direct-arrival zone in deep water with a vector sensor and its application. Acta Physica Sinica, 2016, 65(9): 094302. doi: 10.7498/aps.65.094302
    [8] Wang Ding, Zhang Mei-Gen. Elastic wave propagation characteristics under anisotropic squirt-flow condition. Acta Physica Sinica, 2014, 63(6): 069101. doi: 10.7498/aps.63.069101
    [9] Wan Jin, Tian Yu, Zhou Ming, Zhang Xiang-Jun, Meng Yong-Gang. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Physica Sinica, 2012, 61(1): 016202. doi: 10.7498/aps.61.016202
    [10] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [11] Hou Xiao-Juan, Yun Guo-Hong, Bai Yu-Hao, Bai Narsu, Zhou Wen-Ping. The eigenvalues of quantized spin waves and theeffect of the uniaxial anisotropy. Acta Physica Sinica, 2011, 60(5): 056805. doi: 10.7498/aps.60.056805
    [12] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Yang Guo-Hui. Transmission characteristics of a rectangular waveguide filled with anisotropic metamaterial. Acta Physica Sinica, 2008, 57(9): 5476-5484. doi: 10.7498/aps.57.5476
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Cai Li, Han Xiao-Yun, Wen Xi-Sen. The elastic wave propagation in two-dimensional phononic crystal at low frequencies and the anisotropy of effective velocity. Acta Physica Sinica, 2008, 57(3): 1746-1752. doi: 10.7498/aps.57.1746
    [15] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [16] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [17] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [18] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. A JEC-FDTD implementation for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(3): 783-787. doi: 10.7498/aps.53.783
    [19] Liu Shao-Bin, Mo Jin-Jun, Yuan Nai-Chang. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas. Acta Physica Sinica, 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
    [20] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
Metrics
  • Abstract views:  3466
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2022
  • Accepted Date:  23 December 2022
  • Available Online:  29 December 2022
  • Published Online:  05 March 2023

/

返回文章
返回