Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of amorphous-like thermal conductivity in binary oxide Yb3TaO7

Wang Xue-Zhi Tang Yu-Ting Che Jun-Wei Linghu Jia-Jun Hou Zhao-Yang

Citation:

Mechanism of amorphous-like thermal conductivity in binary oxide Yb3TaO7

Wang Xue-Zhi, Tang Yu-Ting, Che Jun-Wei, Linghu Jia-Jun, Hou Zhao-Yang
PDF
HTML
Get Citation
  • The materials with low thermal conductivity (κ) are both fundamentally interesting and technologically important in applications relevant to thermal energy conversion and thermal management, such as thermoelectric conversion devices, thermal barrier coatings, and thermal storage. Therefore, understanding the physical mechanisms of glass-like heat conduction in crystalline materials is essential for the development and design of low-κ materials. In this work, the microscopic phonon mechanism of glass-like low κ in binary simple crystal Yb3TaO7 with fluorite structure is investigated by using the equilibrium molecular dynamics, phonon spectral energy density, and lattice dynamics. Meanwhile, the weberite-structured Yb3TaO7 is also mentioned for comparison. The calculated κ indicates that fluorite Yb3TaO7 has a glass-like low κ while weberite Yb3TaO7 has a crystal κ. Such a low κ in fluorite Yb3TaO7 is mainly due to the large difference in interatomic force between O-Yb and O-Ta. This different atomic bonding can significantly soften the phonon mode and thus limit phonon transport. To further describe the microscopic phonon thermal conduction, the single-channel model based on the phonon gas model is first used to calculate the total κ. However, the single-channel model significantly underestimates the κ, suggesting the presence of non-normal phonons in Yb3TaO7. Based on this, vibrational mode decomposition is conducted throughout the entire phonon spectrum of fluorite- and weberite-type Yb3TaO7. It is found that most modes in fluorite Yb3TaO7 fall in the Ioffe–Regel regime and exhibit a strongly diffusive nature. Such diffusive modes cannot be described by the phonon gas model. Based on the decomposed phonon modes, the dual-channel model involving diffusive mode and propagating mode is used to describe the phonon thermal conduction, by which the obtained results accord well with the experimental values. The vast majority (> 90%) of heat in fluorite Yb3TaO7 is found to be transported by diffusive modes rather than propagating modes. Consequently, the κ of fluorite Yb3TaO7 increases with temperature rising, exhibiting a unique glass-like nature. In particular, contrary to conventional wisdom, the optical phonon mode in fluorite Yb3TaO7 plays a significant or even decisive role in thermal conduction, which could serve as a new physical factor to adjust κ in solid materials. Overall, the new understanding of the link between chemical bonding and glass-like κ can contribute to the development and design of low-κ materials.
      Corresponding author: Wang Xue-Zhi, xzh_wang@chd.edu.cn
    • Funds: Projected supported by the National Natural Science Foundation of China (Grant No. 12204063), the Fundamental Research Funds for the Central Universities of China (Grant No. 300102122112), and the Natural Science Basic Research Plan of Shaanxi Province, China (Grant No. 2020JQ-339).
    [1]

    Padture N P, Gell M, Jordan E H 2002 Science 296 280Google Scholar

    [2]

    Wu J, Wei X, Padture N P, Klemens P G, Gell M, Garcia E, Miranzo P, Osendi M I 2003 Chem. Inform. 34 3031

    [3]

    Schelling P K, Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [4]

    Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece M J, Gao F 2021 J. Eur. Ceram. Soc. 41 2861Google Scholar

    [5]

    Chevalier J, Gremillard L, Virkar A V, Clarke D R 2009 J. Am. Ceram. Soc. 92 1901Google Scholar

    [6]

    Anupam A, Kottada R S, Kashyap S, Meghwal A, Murty B S, Berndt C C, Ang A S M 2020 Appl. Surf. Sci. 505 144117Google Scholar

    [7]

    李世彬, 吴志明, 袁凯, 廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 3126Google Scholar

    Li S B, Wu Z M, Yuan K, Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 3126Google Scholar

    [8]

    King G, Thompson C M, Greedanb J E, Llobet A 2013 J. Mater. Chem. A. 1 10487Google Scholar

    [9]

    Chen L, Hu M, Wu F, Song P, Feng J 2019 J. Alloys Compd. 788 1231Google Scholar

    [10]

    Schlichting K W, Padture N P, Klemens P G 2001 J. Mater. Sci. 36 3003Google Scholar

    [11]

    Zarichnyak Y P, Ramazanova A E, Emirov S N 2013 Phys. Solid State 55 2436Google Scholar

    [12]

    Stanek C R, Minervini L, Grimes R W 2002 J. Am. Ceram. Soc. 85 2792Google Scholar

    [13]

    Tealdi C, Islam M S, Malavasi L, Flor G 2004 J. Solid State Chem. 177 4359Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, W R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J 2010 Phys. Rev. B 81 081411Google Scholar

    [16]

    Turney J E, Landry E S, McGaughey A J H, Amon C H 2009 Phys. Rev. B 79 064301Google Scholar

    [17]

    Su R, Yuan Z, Wang J, Zhang Z 2015 Phys. Rev. E 91 012136Google Scholar

    [18]

    Su R X, Yuan Z Q, Wang J, Zheng Z G 2016 Front. Phys. 11 114401Google Scholar

    [19]

    郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔 2022 物理学报 71 056101Google Scholar

    Zheng C H, Yang J, Xie G F, Zhou W X, Ouyang T 2022 Acta Phys. Sin. 71 056101Google Scholar

    [20]

    Lee C H, Gan C K 2017 Phys. Rev. B 96 035105Google Scholar

    [21]

    Lü W, Henry A 2016 Sci. Rep. 6 35720Google Scholar

    [22]

    Yang B, Chen G 2003 Phys. Rev. B 67 195311Google Scholar

    [23]

    Dechaumphai E, Chen R 2012 J. Appl. Phys. 111 073508Google Scholar

    [24]

    Luo Y X, Yang X L, Feng T L, Wang J Y, Ruan X L 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Kumar G, Vangessel F G, Elton D C, Chung P W 2019 MRS Adv. 4 2191Google Scholar

    [26]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 25101Google Scholar

    [27]

    Beltukov Y M, Kozub V I, Parshin D A 2013 Phys. Rev. B 87 134203Google Scholar

    [28]

    Allen P B, Feldman J L 1993 Phys. Rev. B 48 12581Google Scholar

    [29]

    Clarke D R 2003 Surf. Coat. Technol. 163 67

    [30]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [31]

    Morelli D T, Heremans J P, Slack G A 2002 Phys. Rev. B 66 195304Google Scholar

    [32]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

  • 图 1  Yb3TaO7 (a) 萤石结构; (b)冰镁石结构

    Figure 1.  Yb3TaO7: (a) Fluorite-type; (b) weberite-type.

    图 2  1500 K温度下的热导率计算结果 (a) 归一化热流关联函数随关联时间的变化关系; (b) 热导率随关联时间的变化关系; (c) 不同超胞的热导率; (d) 热导率随温度的变化关系

    Figure 2.  Calculated thermal conductivity at 1500 K: (a) Normalized HCACF versus correlation time; (2) thermal conductivity versus correlation time; (c) calculated thermal conductivity with different supercell; (d) temperature dependence of thermal conductivity.

    图 3  在300 K温度下, 萤石Yb3TaO7的热输运性质 (a) 模式比热容; (b) 声子寿命; (c)声子群速度

    Figure 3.  Thermal transport properties of F-Yb3TaO7 at 300 K: (a) Mode capacity; (b) phonon lifetime; (c) phonon group velocity.

    图 4  Yb3TaO7的SED计算结果 (a) 萤石; (b) 冰镁石

    Figure 4.  Calculated SED plots of Yb3TaO7: (a) F-type; (b) W-type.

    图 5  (a) 原子间相互作用力; (b) 一维双原子链的声子色散关系

    Figure 5.  (a) Calculated interatomic bonding force; (b) phonon dispersion relationship of for a one-dimensional diatomic chain.

    图 6  Yb3TaO7在不同频率区间内的声子极化 (a) 萤石; (b) 冰镁石

    Figure 6.  Phonon polarization of Yb3TaO7 in different frequency domains: (a) F-type; (b) W-type.

    图 7  (a) 萤石Yb3TaO7和(b) 冰镁石Yb3TaO7的总参与率; (c) 萤石Yb3TaO7和(d) 冰镁石Yb3TaO7中各元素的参与率

    Figure 7.  Total phonon participation ratio of (a) F-Yb3TaO7 and (b) W-Yb3TaO7; atomic phonon participation ratio of (c) F-Yb3TaO7 and (d) W-Yb3TaO7.

    图 8  Yb3TaO7的声子平均自由程 (a) 萤石, (b)冰镁石; Yb3TaO7中传播子和扩散子的热导率 (c) 萤石, (d) 冰镁石

    Figure 8.  Phonon mean free paths of (a) F-Yb3TaO7 and (b) F-Yb3TaO7; thermal conductivity of propagons and diffusons in (c) F-Yb3TaO7 and (d) F-Yb3TaO7.

    表 1  Yb3TaO7的力场参数[12,13]

    Table 1.  Force field parameters for Yb3TaO7[12,13].

    原子间作用A/eVρC/(eV·Å6)
    O—O9547.960.219232.00
    O—Ta1315.570.36900
    O—Yb1649.800.338616.57
    DownLoad: CSV

    表 2  计算的La2Zr2O7和Yb3TaO7的晶格常数、格林艾森常数和弹性模量

    Table 2.  Calculated lattice constants, Grüneisen constants, and elastic modulus for La2Zr2O7 and Yb3TaO7.

    材料晶格常数/Å格林艾森常数弹性模量/GPa
    计算值实验值计算值实验值计算值实验值
    F-Yb3TaO75.195 5.1955.1955.1865.1865.186 [9]1.641.55[9]176 209[9]
    W-Yb3TaO710.4117.4017.40010.3807.330 7.330 [8]1.51191
    DownLoad: CSV
  • [1]

    Padture N P, Gell M, Jordan E H 2002 Science 296 280Google Scholar

    [2]

    Wu J, Wei X, Padture N P, Klemens P G, Gell M, Garcia E, Miranzo P, Osendi M I 2003 Chem. Inform. 34 3031

    [3]

    Schelling P K, Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997Google Scholar

    [4]

    Zhu J, Meng X, Zhang P, Li Z, Xu J, Reece M J, Gao F 2021 J. Eur. Ceram. Soc. 41 2861Google Scholar

    [5]

    Chevalier J, Gremillard L, Virkar A V, Clarke D R 2009 J. Am. Ceram. Soc. 92 1901Google Scholar

    [6]

    Anupam A, Kottada R S, Kashyap S, Meghwal A, Murty B S, Berndt C C, Ang A S M 2020 Appl. Surf. Sci. 505 144117Google Scholar

    [7]

    李世彬, 吴志明, 袁凯, 廖乃镘, 李伟, 蒋亚东 2008 物理学报 57 3126Google Scholar

    Li S B, Wu Z M, Yuan K, Liao N M, Li W, Jiang Y D 2008 Acta Phys. Sin. 57 3126Google Scholar

    [8]

    King G, Thompson C M, Greedanb J E, Llobet A 2013 J. Mater. Chem. A. 1 10487Google Scholar

    [9]

    Chen L, Hu M, Wu F, Song P, Feng J 2019 J. Alloys Compd. 788 1231Google Scholar

    [10]

    Schlichting K W, Padture N P, Klemens P G 2001 J. Mater. Sci. 36 3003Google Scholar

    [11]

    Zarichnyak Y P, Ramazanova A E, Emirov S N 2013 Phys. Solid State 55 2436Google Scholar

    [12]

    Stanek C R, Minervini L, Grimes R W 2002 J. Am. Ceram. Soc. 85 2792Google Scholar

    [13]

    Tealdi C, Islam M S, Malavasi L, Flor G 2004 J. Solid State Chem. 177 4359Google Scholar

    [14]

    张智奇, 钱胜, 王瑞金, 朱泽飞 2019 物理学报 68 054401Google Scholar

    Zhang Z Q, Qian S, W R J, Zhu Z F 2019 Acta Phys. Sin. 68 054401Google Scholar

    [15]

    Thomas J A, Turney J E, Iutzi R M, Amon C H, McGaughey A J 2010 Phys. Rev. B 81 081411Google Scholar

    [16]

    Turney J E, Landry E S, McGaughey A J H, Amon C H 2009 Phys. Rev. B 79 064301Google Scholar

    [17]

    Su R, Yuan Z, Wang J, Zhang Z 2015 Phys. Rev. E 91 012136Google Scholar

    [18]

    Su R X, Yuan Z Q, Wang J, Zheng Z G 2016 Front. Phys. 11 114401Google Scholar

    [19]

    郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔 2022 物理学报 71 056101Google Scholar

    Zheng C H, Yang J, Xie G F, Zhou W X, Ouyang T 2022 Acta Phys. Sin. 71 056101Google Scholar

    [20]

    Lee C H, Gan C K 2017 Phys. Rev. B 96 035105Google Scholar

    [21]

    Lü W, Henry A 2016 Sci. Rep. 6 35720Google Scholar

    [22]

    Yang B, Chen G 2003 Phys. Rev. B 67 195311Google Scholar

    [23]

    Dechaumphai E, Chen R 2012 J. Appl. Phys. 111 073508Google Scholar

    [24]

    Luo Y X, Yang X L, Feng T L, Wang J Y, Ruan X L 2020 Nat. Commun. 11 1Google Scholar

    [25]

    Kumar G, Vangessel F G, Elton D C, Chung P W 2019 MRS Adv. 4 2191Google Scholar

    [26]

    Seyf H R, Henry A 2016 J. Appl. Phys. 120 25101Google Scholar

    [27]

    Beltukov Y M, Kozub V I, Parshin D A 2013 Phys. Rev. B 87 134203Google Scholar

    [28]

    Allen P B, Feldman J L 1993 Phys. Rev. B 48 12581Google Scholar

    [29]

    Clarke D R 2003 Surf. Coat. Technol. 163 67

    [30]

    Cahill D G, Watson S K, Pohl R O 1992 Phys. Rev. B 46 6131Google Scholar

    [31]

    Morelli D T, Heremans J P, Slack G A 2002 Phys. Rev. B 66 195304Google Scholar

    [32]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

  • [1] Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun. Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces. Acta Physica Sinica, 2023, 72(22): 226301. doi: 10.7498/aps.72.20230791
    [2] Ren Guo-Liang, Shen Kai-Bo, Liu Yong-Jia, Liu Ying-Guang. Thermal conduction mechanism of graphene-like carbon nitride structure (C3N). Acta Physica Sinica, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [3] Gao Guan-Hua, Xu Yu, Liao Guo-Fu, Lu Fang-Jun. Estimation method for beam size of superconducting transition edge detector. Acta Physica Sinica, 2022, 71(15): 158502. doi: 10.7498/aps.71.20220335
    [4] Pan Dong-Kai, Zong Zhi-Cheng, Yang Nuo. Phonon weak couplings in nanoscale thermophysics. Acta Physica Sinica, 2022, 71(8): 086302. doi: 10.7498/aps.71.20220036
    [5] Yu Hang, Xu Xi-Fang, Niu Qian, Zhang Li-Fa. Phonon angular momentum and chiral phonons. Acta Physica Sinica, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [6] Xing Yu-Heng, Xu Xi-Fang, Zhang Li-Fa. Topological phonons and phonon Hall effects. Acta Physica Sinica, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [7] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [9] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [10] Peng Xiao-Fang, Wang Xin-Jun, Gong Zhi-Qiang, Chen Li-Qun. Acoustic phonon transport and thermal conductance in one-dimensional quantum waveguide modulated with quantum dots. Acta Physica Sinica, 2011, 60(12): 126802. doi: 10.7498/aps.60.126802
    [11] Jin Wei, Hui Ning-Ju, Qu Shi-Xian. Phonon transport through helix nanobelts. Acta Physica Sinica, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [12] He Meng-Dong, Gong Zhi-Qiang. Acoustic-phonon transmission in multilayer heterojunctions. Acta Physica Sinica, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [13] Tang Li-Ming, Wang Yan, Wang Dan, Wang Ling-Ling. Effect of boundary conditions on phonon transmission in a dielectric quantum waveguide. Acta Physica Sinica, 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [14] HUANG XIU-QING, LIU YOU-YAN, ZOU NAN-ZHI, MA PENG-HUI. PHONON AND MELTING PROPERTY OF THE TWO-DIMENSIONAL PENROSE QUASICRYSTALS. Acta Physica Sinica, 1993, 42(7): 1086-1094. doi: 10.7498/aps.42.1086
    [15] Huang Xiou-qing; Liu You-yan;Zou Nan-zhi;Ma Peng-hui. PHONON AND MELTING PROPERTY OF THE TWO DIMENSIONAL PENROSE QUASICRYSTALS. Acta Physica Sinica, 1991, 40(7): 1086-1094. doi: 10.7498/aps.40.1086
    [16] PANG GEN-DI, CAI JIAN-HUA. PHONON LOCALIZATION IN INHOMOGENEOUS DISORDERED SYSTEMS. Acta Physica Sinica, 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [17] FU YING, XU WEN-LAN. PHONON SPECTRA OF Ge1-x Six MIXED CRYSTALS. Acta Physica Sinica, 1988, 37(1): 162-166. doi: 10.7498/aps.37.162
    [18] WEI CHONG-DE, ZHAO SHI-PING, XIE LI-XIN. THE INHOMOGENEOUS STATES OF SUPERCONDUCTING TIN FILMS UNDER PHONON INJECTION. Acta Physica Sinica, 1985, 34(10): 1368-1372. doi: 10.7498/aps.34.1368
    [19] YAN SHOU-SHENG, GAO LI-MING, WAN JUN-ZUO, PENG ZHENG-WEI, YING ZHI-QIANG. ANOMALOUS BEHAVIOUR OF THE LOW TEMPERATURE PHONON CONDUCTIVITY OF AN FeMnAl ALLOY. Acta Physica Sinica, 1985, 34(6): 809-812. doi: 10.7498/aps.34.809
    [20] SHEN XUE-CHU, CHU JUN-HAO. FAR INFRARED SPECTRAL STUDY OF THE PHONON STATES OF THE MIXED CRYSTALS CdxHg1-x Te. Acta Physica Sinica, 1984, 33(6): 729-737. doi: 10.7498/aps.33.729
  • supplement 5-20221581补充材料.pdf supplement
Metrics
  • Abstract views:  3417
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2022
  • Accepted Date:  12 December 2022
  • Available Online:  05 January 2023
  • Published Online:  05 March 2023

/

返回文章
返回