Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces

Wang Quan-Jie Deng Yu-Ge Wang Ren-Zong Liu Xiang-Jun

Citation:

Interface engineering moderated interfacial thermal conductance of GaN-based heterointerfaces

Wang Quan-Jie, Deng Yu-Ge, Wang Ren-Zong, Liu Xiang-Jun
PDF
HTML
Get Citation
  • Gallium nitride (GaN) has great potential applications in the field of high-frequency and high-power electronic devices because of its excellent material properties such as wide band gap, high electron mobility, high breakdown field strength. However, the high power GaN electronic device also exhibits significant self-heating effects in operation, such as a large amount of Joule heat localized in the thermal channel, and heat dissipation has become a bottleneck in its applications. The interface thermal conductance (ITC) between GaN and its substrate is the key to determining the thermal dissipation. In this work the various GaN interface defects and their effects on ITC are first discussed, and then some methods of studying interface thermal transport are introduced, including theoretical analysis and experimental measurements. Then, some GaN ITC optimization strategies developed in recent years are introduced through comparing the specific cases. In addition to the common chemical bond interface, the weak coupling interface by van der Waals bond is also discussed. Finally, a summary for this review is presented. We hope that this review can provide valuable reference for actually designing GaN devices.
      Corresponding author: Liu Xiang-Jun, xjliu@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52150610495, 52206080) and the Shanghai Committee of Science and Technology, China (Grant Nos. 21TS1401500, 22YF1400100).
    [1]

    Li M, Chen F L, Kocher C, Zhang H, Li S X, Huang F, Zhang J, Taylor R A 2020 ACS Appl. Electron. Mater. 2 571Google Scholar

    [2]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [3]

    Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, Gao P 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2117027119Google Scholar

    [4]

    Filippov K A, Balandin A A 2003 MRS Internet J. Nitride Semicond. Res. 8 4Google Scholar

    [5]

    Cheng Z, Mu F W, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. Interfaces 12 8376Google Scholar

    [6]

    Shih H Y, Shiojiri M, Chen C H, Yu S F, Ko C T, Yang J R, Lin R M, Chen M J 2015 Sci. Rep. 5 13671Google Scholar

    [7]

    开翠红, 王蓉, 杨德仁, 皮孝东 2021 人工晶体学报 50 1780Google Scholar

    Kai C H, Wang R, Yang D R, Pi X D 2021 J. Synth. Cryst. 50 1780Google Scholar

    [8]

    Lee S B, Ju J W, Kim Y M, Yoo S J, Kim J G, Han H N, Lee D N 2015 AIP Adv. 5 077180Google Scholar

    [9]

    Yates L, Anderson J, Gu X, Lee C, Bai T Y, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. Interfaces 10 24302Google Scholar

    [10]

    Chen J, Xu X F, Zhou J, Li B W 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [11]

    Wang Q J, Wang X J, Liu X J, Zhang J 2021 J. Appl. Phys. 129 235102Google Scholar

    [12]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [13]

    Jani O, Yu H B, Trybus E, Jampana B, Ferguson I, Doolittle A, Honsberg C 2007 22nd European Photovoltaic Solar Energy Conference Milan, Italy September 3–7, 2007 p64

    [14]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [15]

    Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y, Rajan S 2016 Appl. Phys. Lett. 109 183505Google Scholar

    [16]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [17]

    Zhang H G, Wang H Y, Xiong S Y, Han H X, Volz S, Ni Y X 2018 J. Phys. Chem. C 122 2641Google Scholar

    [18]

    Wang Q J, Zhang J, Xiong Y C, Li S H, Chernysh V, Liu X J 2023 ACS Appl. Mater. Interfaces 15 3377Google Scholar

    [19]

    Lyeo H K, Cahill D G 2006 Phys. Rev. B 73 144301Google Scholar

    [20]

    Zhou X W, Jones R E, Kimmer C J, Duda J C, Hopkins P E 2013 Phys. Rev. B 87 094303Google Scholar

    [21]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar

    [22]

    Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford university press) p459

    [23]

    Cheng Z, Li R Y, Yan X X, Jernigan G, Shi J J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X Q, Luo T F, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [24]

    Gordiz K, Henry A 2016 J. Appl. Phys. 119 015101Google Scholar

    [25]

    Giri A, Hopkins P E 2019 Adv. Funct. Mater. 30 1903857Google Scholar

    [26]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 91 115426Google Scholar

    [27]

    Chen X K, Pang M, Chen T, Du D, Chen K Q 2020 ACS Appl. Mater. Interfaces 12 15517Google Scholar

    [28]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. Sci. 581 152344Google Scholar

    [29]

    Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S, Xiong S Y 2019 Int. J. Heat Mass Transfer 144 118608Google Scholar

    [30]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 92 245411Google Scholar

    [31]

    Gordiz K, Henry A 2015 New J. Phys. 17 103002Google Scholar

    [32]

    Gordiz K, Henry A 2017 J. Appl. Phys. 121 025102Google Scholar

    [33]

    Zhou Y G, Hu M 2017 Phys. Rev. B 95 115313Google Scholar

    [34]

    Feng T L, Zhong Y, Shi J J, Ruan X L 2019 Phys. Rev. B 99 045301Google Scholar

    [35]

    Feng T L, Yao W J, Wang Z Y, Shi J J, Li C, Cao B Y, Ruan X L 2017 Phys. Rev. B 95 195202Google Scholar

    [36]

    Huang Z X, Wang Q J, Liu X Y, Liu X J 2023 Phys. Chem. Chem. Phys. 25 2349Google Scholar

    [37]

    Field D E, Cuenca J A, Smith M, Fairclough S M, Massabuau F C, Pomeroy J W, Williams O, Oliver R A, Thayne I, Kuball M 2020 ACS Appl. Mater. Interfaces 12 54138Google Scholar

    [38]

    Malakoutian M, Field D E, Hines N J, Pasayat S, Graham S, Kuball M, Chowdhury S 2021 ACS Appl. Mater. Interfaces 13 60553Google Scholar

    [39]

    Song Y W, Shoemaker D, Leach J H, McGray C, Huang H L, Bhattacharyya A, Zhang Y Y, Gonzalez-Valle C U, Hess T, Zhukovsky S, Ferri K, Lavelle R M, Perez C, Snyder D W, Maria J P, Ramos-Alvarado B, Wang X J, Krishnamoorthy S, Hwang J, Foley B M, Choi S 2021 ACS Appl. Mater. Interfaces 13 40817Google Scholar

    [40]

    Zheng W D, McClellan C J, Pop E, Koh Y K 2022 ACS Appl. Mater. Interfaces 14 22372Google Scholar

    [41]

    El Sachat A, Köenemann F, Menges F, Del Corro E, Garrido J A, Torres C M S, Alzina F, Gotsmann B 2019 2D Mater. 6 025034Google Scholar

    [42]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [43]

    Yalon E, McClellan C J, Smithe K K H, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, Pop E 2017 Nano Lett. 17 3429Google Scholar

    [44]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [45]

    Yalon E, Aslan B, Smithe K K H, McClellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [46]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [47]

    Waltereit P, Brandt O, Trampert A, Ramsteiner M, Reiche M, Qi M, Ploog K H 1999 Appl. Phys. Lett. 74 3660Google Scholar

    [48]

    Tanaka S, Iwai S, Aoyagi Y 1997 J. crystal growth 170 329Google Scholar

    [49]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [50]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [51]

    Hsieh W P, Lyons A S, Pop E, Keblinski P, Cahill D G 2011 Phys. Rev. B 84 184107Google Scholar

    [52]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [53]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [54]

    Polanco C A, Rastgarkafshgarkolaei R, Zhang J J, Le N Q, Norris P M, Ghosh A W 2017 Phys. Rev. B 95 195303Google Scholar

    [55]

    Lee E, Luo T F 2017 Phys. Chem. Chem. Phys. 19 18407Google Scholar

    [56]

    Hu M, Zhang X L, Poulikakos D, Grigoropoulos C P 2011 Int. J. Heat Mass Transfer 54 5183Google Scholar

    [57]

    Chen B, Zhang L F 2015 J. Phys. Condens. Matter. 27 125401Google Scholar

    [58]

    Xiong G H, Wang J S, Ma D K, Zhang L F 2020 EPL (Europhysics Letters) 128 54007Google Scholar

    [59]

    Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter. 35 053001

    [60]

    Yun F, Reshchikov M A, He L, Morkoç H, Inoki C K, Kuan T S 2002 Appl. Phys. Lett. 81 4142Google Scholar

    [61]

    Neudeck P G, Powell J A, Beheim G M, Benavage E L, Abel P B, Trunek A J, Spry D J, Dudley M, Vetter W M 2002 J. Appl. Phys. 92 2391Google Scholar

    [62]

    Lee E, Zhang T, Hu M, Luo T 2016 Phys. Chem. Chem. Phys. 18 16794Google Scholar

    [63]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [64]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T F 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [65]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [66]

    Lee E, Luo T F 2018 Appl. Phys. Lett. 112 011603Google Scholar

    [67]

    Li R Y, Gordiz K, Henry A, Hopkins P E, Lee E, Luo T F 2019 Phys. Chem. Chem. Phys. 21 17029Google Scholar

    [68]

    Zhou Y, Zhou S, Wan S, Zou B, Feng Y X, Mei R, Wu H, Shigekawa N, Liang J B, Tan P H, Kuball M 2023 Appl. Phys. Lett. 122 082103Google Scholar

    [69]

    Mu F W, Cheng Z, Shi J J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. Interfaces 11 33428Google Scholar

    [70]

    Spindlberger A, Kysylychyn D, Thumfart L, Adhikari R, Rastelli A, Bonanni A 2021 Appl. Phys. Lett. 118 062105Google Scholar

    [71]

    Pécz B, Makkai Z, Frayssinet E, Beaumont B, Gibart P 2005 Phys. Status Solidi C 2 1310Google Scholar

    [72]

    Wang Q J, Zhang J, Chernysh V, Liu X J 2023 arXiv: 2306.14901 [physics.app-ph

    [73]

    Liu X Y, Wang Q J, Wang R Z, Wang S, Liu X J 2023 J. Appl. Phys. 133 095101Google Scholar

    [74]

    Shulumba N, Raza Z, Hellman O, Janzén E, Abrikosov I A, Odén M 2016 Phys. Rev. B 94 104305Google Scholar

    [75]

    Ziade E, Yang J, Brummer G, Nothern D, Moustakas T, Schmidt A J 2015 Appl. Phys. Lett. 107 091605Google Scholar

    [76]

    Lee E W, Lee C H, Paul P K, Ma L, McCulloch W D, Krishnamoorthy S, Wu Y Y, Arehart A R, Rajan S 2015 Appl. Phys. Lett. 107 103505Google Scholar

    [77]

    Ong Z Y, Qiu B, Xu S L, Ruan X L, Pop E 2018 J. Appl. Phys. 123 115107Google Scholar

    [78]

    Loh T A, Chua D H 2014 ACS Appl. Mater. Interfaces 6 15966Google Scholar

    [79]

    Muruganathan M, Sun J, Imamura T, Mizuta H 2015 Nano Lett. 15 8176Google Scholar

    [80]

    Liu X J, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 12541Google Scholar

    [81]

    Chen W, Zhang J C, Yue Y N 2016 Int. J. Heat Mass Transfer 103 1058Google Scholar

    [82]

    Zhang L N, Zhong Y, Qian X, Song Q C, Zhou J W, Li L, Guo L, Chen G, Wang E N 2021 ACS Appl. Mater. Interfaces 13 46055Google Scholar

    [83]

    Liu W X, Huang X N, Yue Y N 2023 Int. J. Heat Mass Transfer 201 123673Google Scholar

    [84]

    Liu D H, Chen X S, Yan Y P, et al. 2019 Nat. Commun. 10 1188Google Scholar

    [85]

    Sadeghi M M, Jo I, Shi L 2013 Proc. Natl. Acad. Sci. U. S. A. 110 16321Google Scholar

  • 图 1  各种GaN界面缺陷 (a) 界面非晶层[5]; (b) 原子位错[6]; (c) 应力[7,8]; (d) 空隙[9]

    Figure 1.  Various types of interfacial defects in GaN: (a) Interfacial amorphous layer[5]; (b) atoms dislocation[6]; (c) strain[7,8]; (d) voids[9]

    图 2  界面热导研究方法 (a) AMM和DMM模型; (b) 声子波包法; (c) 原子格林函数法; (d) 分子动力学方法

    Figure 2.  Study methods for interface thermal transport: (a) AMM and DMM models; (b) phonon wave packet method; (c) atomic Green’s function method; (d) molecular dynamics method.

    图 3  界面热导实验测量方法 (a) 时域热反射法; (b) 拉曼法测MoS2/SiO2界面热导[45]

    Figure 3.  Experimental measured methods for thermal boundary conductance: (a) Time-domain thermo-reflectance method; (b) MoS2/SiO2 thermal boundary conductance measured by Raman method[45].

    图 4  (a) 利用时域热反射法测量的GaN/金刚石、GaN/AlN/金刚石、GaN/SiN/金刚石界面热导[9]; (b) 高分辨率TEM下观测到的GaN/SiN/金刚石界面图象[9]; (c) GaN/SiC界面热导与外延和非外延AlN插层厚度的关系, 虚线表示非外延插层厚度为0时的界面热导[56]; (d) 对比GaN/SiC界面有一个元胞厚的非外延AlN插层(实线)和没有AlN插层(虚线)时的声子态密度[56]

    Figure 4.  (a) Measured interfacial thermal resistance for GaN/diamond, GaN/AlN/diamond, and GaN/SiN/diamond interfaces by the time-domain thermo-reflectance technique[9]; (b) high-resolution TEM image for GaN/SiN/diamond interface[9]; (c) interfacial thermal conductance between GaN and SiC with epitaxial or non-epitaxial AlN interlayer as a function of AlN thickness. The dashed line refers to the non-epitaxial interface that with no interlayer[56]; (d) comparison of vibrational density of states of GaN/SiC interface with 1 unit cell non-epitaxial AlN interlayer (solid lines) and bare (dotted lines) GaN/SiC interface[56].

    图 5  (a) 带有石墨烯插层的图形化GaN/金刚石界面形貌以及GaN/金刚石界面为平面时的GaN声子态密度, 其中红色箭头表示受石墨烯影响激发出来声子模态[63]; (b) 不同纳米柱长度、间隔时的Al/Si界面热导, 虚线表示理论预测结果, 实线表示光滑界面时的界面热导[64]

    Figure 5.  (a) Graphical GaN/diamond heterostructure with a graphene interlayer as well the vibrational density of states in GaN, where the red arrow refers to the excited phonon mode by graphene interlayer[63]; (b) thermal boundary conductance for Si/Al interface with various lengths and intervals of nanopillars, where the dotted lines are predicted by the theoretical model and the solid line refers to the planar interface[64].

    图 6  (a) 同位素掺杂的SiC/GaN界面模型, 以及在不同掺杂浓度时的界面热导[66]; (b) 轻质量原子掺杂的SiC/GaN界面模型, 以及在不同掺杂浓度f和掺杂长度L时的界面热导[67]

    Figure 6.  (a) Structure of GaN/SiC interface with isotope doping, and the calculated thermal boundary conductance with different doping concentrations[66]; (b) structure of GaN/SiC interface with light atoms doping, and the calculated thermal boundary conductance with different doping concentrations (f) and doping lengths (L)[67].

    图 7  (a) LA模声子波包穿过GaN/AlN界面非晶层后的散射画面[72]; (b) TA模声子波包在穿过不同厚度界面扩散层时扩散层内能量随时间的变化[73]; (c) 不同GaN/AlN界面形貌时的界面热导[11]; (d) GaN/SiC退火前后的界面形貌[69]

    Figure 7.  (a) Snapshots of LA wave packet passing through the amorphous layer at GaN/AlN interface[72]; (b) energy variation in the compositional diffusion layer as a function of time[73]; (c) thermal boundary conductance of GaN/AlN with different interface morphologies[11]; (d) interface morphologies of GaN/SiC with and without annealing treatment[69].

    图 8  (a) GaN/MoS2界面热导和声子态密度重叠度S随衬底表面粗糙度δ的变化[18]; (b) MoS2和GaN衬底不同粗糙度表面层原子的声子态密度分布[18]

    Figure 8.  (a) Evolution of thermal boundary conductance and the density of phonon states overlap factor S as a function of surface roughness δ [18]; (b) density of phonon states distributions for MoS2 and GaN surface atoms with different δ [18].

    图 9  (a) SiO2/MoS2界面热导与界面结合能的关系[82]; (b) SiO2/MoS2界面热导与衬底表面凹槽深度的关系[83]

    Figure 9.  (a) Correlation between SiO2/MoS2 thermal boundary conductance and interface binding energy[82]; (b) correlation between SiO2/MoS2 thermal boundary conductance and groove depth[83].

  • [1]

    Li M, Chen F L, Kocher C, Zhang H, Li S X, Huang F, Zhang J, Taylor R A 2020 ACS Appl. Electron. Mater. 2 571Google Scholar

    [2]

    程哲 2021 物理学报 70 236502Google Scholar

    Cheng Z 2021 Acta Phys. Sin. 70 236502Google Scholar

    [3]

    Li Y H, Qi R S, Shi R C, Hu J N, Liu Z T, Sun Y W, Li M Q, Li N, Song C L, Wang L, Hao Z B, Luo Y, Xue Q K, Ma X C, Gao P 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2117027119Google Scholar

    [4]

    Filippov K A, Balandin A A 2003 MRS Internet J. Nitride Semicond. Res. 8 4Google Scholar

    [5]

    Cheng Z, Mu F W, Yates L, Suga T, Graham S 2020 ACS Appl. Mater. Interfaces 12 8376Google Scholar

    [6]

    Shih H Y, Shiojiri M, Chen C H, Yu S F, Ko C T, Yang J R, Lin R M, Chen M J 2015 Sci. Rep. 5 13671Google Scholar

    [7]

    开翠红, 王蓉, 杨德仁, 皮孝东 2021 人工晶体学报 50 1780Google Scholar

    Kai C H, Wang R, Yang D R, Pi X D 2021 J. Synth. Cryst. 50 1780Google Scholar

    [8]

    Lee S B, Ju J W, Kim Y M, Yoo S J, Kim J G, Han H N, Lee D N 2015 AIP Adv. 5 077180Google Scholar

    [9]

    Yates L, Anderson J, Gu X, Lee C, Bai T Y, Mecklenburg M, Aoki T, Goorsky M S, Kuball M, Piner E L, Graham S 2018 ACS Appl. Mater. Interfaces 10 24302Google Scholar

    [10]

    Chen J, Xu X F, Zhou J, Li B W 2022 Rev. Mod. Phys. 94 025002Google Scholar

    [11]

    Wang Q J, Wang X J, Liu X J, Zhang J 2021 J. Appl. Phys. 129 235102Google Scholar

    [12]

    Tian Z T, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar

    [13]

    Jani O, Yu H B, Trybus E, Jampana B, Ferguson I, Doolittle A, Honsberg C 2007 22nd European Photovoltaic Solar Energy Conference Milan, Italy September 3–7, 2007 p64

    [14]

    Anaya J, Rossi S, Alomari M, Kohn E, Tóth L, Pécz B, Hobart K D, Anderson T J, Feygelson T I, Pate B B, Kuball M 2016 Acta Mater. 103 141Google Scholar

    [15]

    Krishnamoorthy S, Lee E W, Lee C H, Zhang Y W, McCulloch W D, Johnson J M, Hwang J, Wu Y Y, Rajan S 2016 Appl. Phys. Lett. 109 183505Google Scholar

    [16]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [17]

    Zhang H G, Wang H Y, Xiong S Y, Han H X, Volz S, Ni Y X 2018 J. Phys. Chem. C 122 2641Google Scholar

    [18]

    Wang Q J, Zhang J, Xiong Y C, Li S H, Chernysh V, Liu X J 2023 ACS Appl. Mater. Interfaces 15 3377Google Scholar

    [19]

    Lyeo H K, Cahill D G 2006 Phys. Rev. B 73 144301Google Scholar

    [20]

    Zhou X W, Jones R E, Kimmer C J, Duda J C, Hopkins P E 2013 Phys. Rev. B 87 094303Google Scholar

    [21]

    Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16Google Scholar

    [22]

    Ziman J M 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Oxford university press) p459

    [23]

    Cheng Z, Li R Y, Yan X X, Jernigan G, Shi J J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X Q, Luo T F, Graham S 2021 Nat. Commun. 12 6901Google Scholar

    [24]

    Gordiz K, Henry A 2016 J. Appl. Phys. 119 015101Google Scholar

    [25]

    Giri A, Hopkins P E 2019 Adv. Funct. Mater. 30 1903857Google Scholar

    [26]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 91 115426Google Scholar

    [27]

    Chen X K, Pang M, Chen T, Du D, Chen K Q 2020 ACS Appl. Mater. Interfaces 12 15517Google Scholar

    [28]

    Wu D, Ding H, Fan Z Q, Jia P Z, Xie H Q, Chen X K 2022 Appl. Surf. Sci. 581 152344Google Scholar

    [29]

    Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S, Xiong S Y 2019 Int. J. Heat Mass Transfer 144 118608Google Scholar

    [30]

    Sääskilahti K, Oksanen J, Volz S, Tulkki J 2015 Phys. Rev. B 92 245411Google Scholar

    [31]

    Gordiz K, Henry A 2015 New J. Phys. 17 103002Google Scholar

    [32]

    Gordiz K, Henry A 2017 J. Appl. Phys. 121 025102Google Scholar

    [33]

    Zhou Y G, Hu M 2017 Phys. Rev. B 95 115313Google Scholar

    [34]

    Feng T L, Zhong Y, Shi J J, Ruan X L 2019 Phys. Rev. B 99 045301Google Scholar

    [35]

    Feng T L, Yao W J, Wang Z Y, Shi J J, Li C, Cao B Y, Ruan X L 2017 Phys. Rev. B 95 195202Google Scholar

    [36]

    Huang Z X, Wang Q J, Liu X Y, Liu X J 2023 Phys. Chem. Chem. Phys. 25 2349Google Scholar

    [37]

    Field D E, Cuenca J A, Smith M, Fairclough S M, Massabuau F C, Pomeroy J W, Williams O, Oliver R A, Thayne I, Kuball M 2020 ACS Appl. Mater. Interfaces 12 54138Google Scholar

    [38]

    Malakoutian M, Field D E, Hines N J, Pasayat S, Graham S, Kuball M, Chowdhury S 2021 ACS Appl. Mater. Interfaces 13 60553Google Scholar

    [39]

    Song Y W, Shoemaker D, Leach J H, McGray C, Huang H L, Bhattacharyya A, Zhang Y Y, Gonzalez-Valle C U, Hess T, Zhukovsky S, Ferri K, Lavelle R M, Perez C, Snyder D W, Maria J P, Ramos-Alvarado B, Wang X J, Krishnamoorthy S, Hwang J, Foley B M, Choi S 2021 ACS Appl. Mater. Interfaces 13 40817Google Scholar

    [40]

    Zheng W D, McClellan C J, Pop E, Koh Y K 2022 ACS Appl. Mater. Interfaces 14 22372Google Scholar

    [41]

    El Sachat A, Köenemann F, Menges F, Del Corro E, Garrido J A, Torres C M S, Alzina F, Gotsmann B 2019 2D Mater. 6 025034Google Scholar

    [42]

    Taube A, Judek J, Lapinska A, Zdrojek M 2015 ACS Appl. Mater. Interfaces 7 5061Google Scholar

    [43]

    Yalon E, McClellan C J, Smithe K K H, Munoz Rojo M, Xu R L, Suryavanshi S V, Gabourie A J, Neumann C M, Xiong F, Farimani A B, Pop E 2017 Nano Lett. 17 3429Google Scholar

    [44]

    Zhang X, Sun D Z, Li Y L, Lee G H, Cui X, Chenet D, You Y M, Heinz T F, Hone J C 2015 ACS Appl. Mater. Interfaces 7 25923Google Scholar

    [45]

    Yalon E, Aslan B, Smithe K K H, McClellan C J, Suryavanshi S V, Xiong F, Sood A, Neumann C M, Xu X Q, Goodson K E, Heinz T F, Pop E 2017 ACS Appl. Mater. Interfaces 9 43013Google Scholar

    [46]

    Behranginia A, Hemmat Z, Majee A K, Foss C J, Yasaei P, Aksamija Z, Salehi-Khojin A 2018 ACS Appl. Mater. Interfaces 10 24892Google Scholar

    [47]

    Waltereit P, Brandt O, Trampert A, Ramsteiner M, Reiche M, Qi M, Ploog K H 1999 Appl. Phys. Lett. 74 3660Google Scholar

    [48]

    Tanaka S, Iwai S, Aoyagi Y 1997 J. crystal growth 170 329Google Scholar

    [49]

    Siddique A, Ahmed R, Anderson J, Nazari M, Yates L, Graham S, Holtz M, Piner E L 2019 ACS Appl. Electron. Mater. 1 1387Google Scholar

    [50]

    Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502Google Scholar

    [51]

    Hsieh W P, Lyons A S, Pop E, Keblinski P, Cahill D G 2011 Phys. Rev. B 84 184107Google Scholar

    [52]

    Li M, Zhang J C, Hu X J, Yue Y N 2015 Appl. Phys. A 119 415Google Scholar

    [53]

    English T S, Duda J C, Smoyer J L, Jordan D A, Norris P M, Zhigilei L V 2012 Phys. Rev. B 85 035438Google Scholar

    [54]

    Polanco C A, Rastgarkafshgarkolaei R, Zhang J J, Le N Q, Norris P M, Ghosh A W 2017 Phys. Rev. B 95 195303Google Scholar

    [55]

    Lee E, Luo T F 2017 Phys. Chem. Chem. Phys. 19 18407Google Scholar

    [56]

    Hu M, Zhang X L, Poulikakos D, Grigoropoulos C P 2011 Int. J. Heat Mass Transfer 54 5183Google Scholar

    [57]

    Chen B, Zhang L F 2015 J. Phys. Condens. Matter. 27 125401Google Scholar

    [58]

    Xiong G H, Wang J S, Ma D K, Zhang L F 2020 EPL (Europhysics Letters) 128 54007Google Scholar

    [59]

    Ma D K, Xing Y H, Zhang L F 2023 J. Phys. Condens. Matter. 35 053001

    [60]

    Yun F, Reshchikov M A, He L, Morkoç H, Inoki C K, Kuan T S 2002 Appl. Phys. Lett. 81 4142Google Scholar

    [61]

    Neudeck P G, Powell J A, Beheim G M, Benavage E L, Abel P B, Trunek A J, Spry D J, Dudley M, Vetter W M 2002 J. Appl. Phys. 92 2391Google Scholar

    [62]

    Lee E, Zhang T, Hu M, Luo T 2016 Phys. Chem. Chem. Phys. 18 16794Google Scholar

    [63]

    Tao L, Theruvakkattil Sreenivasan S, Shahsavari R 2017 ACS Appl. Mater. Interfaces 9 989Google Scholar

    [64]

    Lee E, Zhang T, Yoo T, Guo Z, Luo T F 2016 ACS Appl. Mater. Interfaces 8 35505Google Scholar

    [65]

    Liu X J, Zhang G, Zhang Y W 2016 Nano Lett. 16 4954Google Scholar

    [66]

    Lee E, Luo T F 2018 Appl. Phys. Lett. 112 011603Google Scholar

    [67]

    Li R Y, Gordiz K, Henry A, Hopkins P E, Lee E, Luo T F 2019 Phys. Chem. Chem. Phys. 21 17029Google Scholar

    [68]

    Zhou Y, Zhou S, Wan S, Zou B, Feng Y X, Mei R, Wu H, Shigekawa N, Liang J B, Tan P H, Kuball M 2023 Appl. Phys. Lett. 122 082103Google Scholar

    [69]

    Mu F W, Cheng Z, Shi J J, Shin S, Xu B, Shiomi J, Graham S, Suga T 2019 ACS Appl. Mater. Interfaces 11 33428Google Scholar

    [70]

    Spindlberger A, Kysylychyn D, Thumfart L, Adhikari R, Rastelli A, Bonanni A 2021 Appl. Phys. Lett. 118 062105Google Scholar

    [71]

    Pécz B, Makkai Z, Frayssinet E, Beaumont B, Gibart P 2005 Phys. Status Solidi C 2 1310Google Scholar

    [72]

    Wang Q J, Zhang J, Chernysh V, Liu X J 2023 arXiv: 2306.14901 [physics.app-ph

    [73]

    Liu X Y, Wang Q J, Wang R Z, Wang S, Liu X J 2023 J. Appl. Phys. 133 095101Google Scholar

    [74]

    Shulumba N, Raza Z, Hellman O, Janzén E, Abrikosov I A, Odén M 2016 Phys. Rev. B 94 104305Google Scholar

    [75]

    Ziade E, Yang J, Brummer G, Nothern D, Moustakas T, Schmidt A J 2015 Appl. Phys. Lett. 107 091605Google Scholar

    [76]

    Lee E W, Lee C H, Paul P K, Ma L, McCulloch W D, Krishnamoorthy S, Wu Y Y, Arehart A R, Rajan S 2015 Appl. Phys. Lett. 107 103505Google Scholar

    [77]

    Ong Z Y, Qiu B, Xu S L, Ruan X L, Pop E 2018 J. Appl. Phys. 123 115107Google Scholar

    [78]

    Loh T A, Chua D H 2014 ACS Appl. Mater. Interfaces 6 15966Google Scholar

    [79]

    Muruganathan M, Sun J, Imamura T, Mizuta H 2015 Nano Lett. 15 8176Google Scholar

    [80]

    Liu X J, Zhang G, Zhang Y W 2014 J. Phys. Chem. C 118 12541Google Scholar

    [81]

    Chen W, Zhang J C, Yue Y N 2016 Int. J. Heat Mass Transfer 103 1058Google Scholar

    [82]

    Zhang L N, Zhong Y, Qian X, Song Q C, Zhou J W, Li L, Guo L, Chen G, Wang E N 2021 ACS Appl. Mater. Interfaces 13 46055Google Scholar

    [83]

    Liu W X, Huang X N, Yue Y N 2023 Int. J. Heat Mass Transfer 201 123673Google Scholar

    [84]

    Liu D H, Chen X S, Yan Y P, et al. 2019 Nat. Commun. 10 1188Google Scholar

    [85]

    Sadeghi M M, Jo I, Shi L 2013 Proc. Natl. Acad. Sci. U. S. A. 110 16321Google Scholar

  • [1] Liu Dong-Jing, Hu Zhi-Liang, Zhou Fu, Wang Peng-Bo, Wang Zhen-Dong, Li Tao. Interfacial thermal conductance of gallium nitride/graphene/diamond heterostructure based on molecular dynamics simulation. Acta Physica Sinica, 2024, 73(15): 150202. doi: 10.7498/aps.73.20240515
    [2] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] Liu Zi-Yi, Chu Fu-Qiang, Wei Jun-Jun, Feng Yan-Hui. Interface thermal conductance and phonon thermal transport characteristics of diamond/carbon nanotube interface. Acta Physica Sinica, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [4] Liu Dong-Jing, Zhou Fu, Hu Zhi-Liang, Huang Jia-Qiang. Molecular dynamics study of interfacial thermal transport properties of graphene/GaN heterostructure. Acta Physica Sinica, 2024, 73(13): 137901. doi: 10.7498/aps.73.20240021
    [5] Qiu Yu-Jun, Li Heng-Xuan, Li Ya-Tao, Huang Chun-Pu, Li Wei-Hua, Zhang Xu-Tao, Liu Ying-Guang. Nanodot embedding based optimization of interfacial thermal conductance. Acta Physica Sinica, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [6] Zong Zhi-Cheng, Pan Dong-Kai, Deng Shi-Chen, Wan Xiao, Yang Li-Na, Ma Deng-Ke, Yang Nuo. Mixed mismatch model predicted interfacial thermal conductance of metal/semiconductor interface. Acta Physica Sinica, 2023, 72(3): 034401. doi: 10.7498/aps.72.20221981
    [7] Liu Dong-Jing, Wang Shao-Ming, Yang Ping. Thermal property of graphene/silicon carbide heterostructure by molecular dynamics simulation. Acta Physica Sinica, 2021, 70(18): 187302. doi: 10.7498/aps.70.20210613
    [8] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [9] Jin Wei, Hui Ning-Ju, Qu Shi-Xian. Phonon transport through helix nanobelts. Acta Physica Sinica, 2011, 60(1): 016301. doi: 10.7498/aps.60.016301
    [10] Qiao Jian-Liang, Chang Ben-Kang, Qian Yun-Sheng, Wang Xiao-Hui, Li Biao, Xu Yuan. Photoemission mechanism of GaN vacuum surface electron source. Acta Physica Sinica, 2011, 60(12): 127901. doi: 10.7498/aps.60.127901
    [11] Jin Yu-Zhe, Hu Yi-Pei, Zeng Xiang-Hua, Yang Yi-Jun. Gamma radiation effect on GaN-based blue light-emitting diodes with multi-quantum well. Acta Physica Sinica, 2010, 59(2): 1258-1262. doi: 10.7498/aps.59.1258
    [12] Xu Sheng-Rui, Zhang Jin-Cheng, Li Zhi-Ming, Zhou Xiao-Wei, Xu Zhi-Hao, Zhao Guang-Cai, Zhu Qing-Wei, Zhang Jin-Feng, Mao Wei, Hao Yue. The triangular pits eliminate of (1120) a-plane GaN growth by metal-orgamic chemical vapor deposition. Acta Physica Sinica, 2009, 58(8): 5705-5708. doi: 10.7498/aps.58.5705
    [13] Zhou Mei, Zhao De-Gang. Effect of p-GaN layer thickness on the performance of p-i-n structure GaN ultraviolet photodetectors. Acta Physica Sinica, 2008, 57(7): 4570-4574. doi: 10.7498/aps.57.4570
    [14] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Study on optical properties of Er/Er+O doped GaN thin films. Acta Physica Sinica, 2007, 56(3): 1621-1626. doi: 10.7498/aps.56.1621
    [15] Meng Kang, Jiang Sen-Lin, Hou Li-Na, Li Chan, Wang Kun, Ding Zhi-Bo, Yao Shu-De. Study of radiation damage in Mg+-implanted GaN. Acta Physica Sinica, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [16] Song Shu-Fang, Chen Wei-De, Xu Zhen-Jia, Xu Xu-Rong. Deep level transient spectroscopy studies of Er and Pr implanted GaN films. Acta Physica Sinica, 2006, 55(3): 1407-1412. doi: 10.7498/aps.55.1407
    [17] Wan Wei, Tang Chun-Yan, Wang Yu-Mei, Li Fang-Hua. A study on the stacking fault in GaN crystals by high-resolution electron microscope imaging. Acta Physica Sinica, 2005, 54(9): 4273-4278. doi: 10.7498/aps.54.4273
    [18] Qin Qi, Yu Nai-Sen, Guo Li-Wei, Wang Yang, Zhu Xue-Liang, Chen Hong, Zhou Jun-Ming. Residual stress in the GaN epitaxial film prepared by in situ SiNx deposition. Acta Physica Sinica, 2005, 54(11): 5450-5454. doi: 10.7498/aps.54.5450
    [19] Liu Shi-Feng, Qin Guo-Gang, You Li-Ping, Zhang Ji-Cai, Fu Zhu-Xi, Dai Lun. Synthesis of GaN nanowires and nano-pyramids in a two-hot-boat chemical vapor deposition system via an In-doping technique. Acta Physica Sinica, 2005, 54(9): 4329-4333. doi: 10.7498/aps.54.4329
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  5039
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  16 May 2023
  • Accepted Date:  21 July 2023
  • Available Online:  22 July 2023
  • Published Online:  20 November 2023

/

返回文章
返回