Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density functional theory study on influence of tensile deformation and electric field on electrical properties of Si atom adsorbed on black phosphorene

Wei Lin Liu Gui-Li Wang Jia-Xin Mu Guang-Yao Zhang Guo-Ying

Citation:

Density functional theory study on influence of tensile deformation and electric field on electrical properties of Si atom adsorbed on black phosphorene

Wei Lin, Liu Gui-Li, Wang Jia-Xin, Mu Guang-Yao, Zhang Guo-Ying
PDF
HTML
Get Citation
  • In this paper, a model of Si atom adsorbed on black phosphorene with a coverage of 2.778% is constructed and the electronic properties of the model are calculated based on density functional theory. Moreover, the electronic properties are regulated by stress and electric field. Under the coverage of the current research, the results show that the adsorption of Si atoms results in the destruction of the black phosphorene’s geometric symmetry, which intensifies the charge transfer in the system and completes the orbital re-hybrid. The band gap of black phosphorene thus disappears and the transition from semiconductor to quasi metal is completed. The stable adsorption is at the H site in the middle of the P atomic ring. Both tensile field and electric field reduce the stability of the system. Owing to the tensile deformation, the band gap is opened by the structure of Si atom adsorbed on black phosphorene. And since the band gap is proportional to the deformation variable, it can be regulated and controlled. Under the combined action of electric field and tensile, the introduction of the electric field leads the band gap of Si adsorbed on black phosphorene system to be narrowed and the transition from the direct band gap to an indirect one to be completed. The band gap still goes up in proportion to the increase of deformation. The band gap of Si atom adsorbed on black phosphorene system is more adjustable than that of the Si atom that is not adsorbed on black phosphorene system, and the stable adjustment of the band gap is more likely to be realized.
      Corresponding author: Liu Gui-Li, garylll@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371049), the Natural Science Foundation of Liaoning Province, China (Grant No. 20102173), and the Liaoning Provincial Department of Education Planned Project of China (Grant No. LZGD2019003).
    [1]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    James B, Matin A, Joy C, Chen Y Z, Ho A G, Valerio A, Raj S V, Yang G, Crozier K B, Yu-Lun C 2018 Nat. Photonics 12 601Google Scholar

    [4]

    Avsar A, Tan J Y, Kurpas M, Gmitra M, Watanabe K, Taniguchi T, Fabian J, Özyilmaz B 2017 Nat. Phys. 13 888Google Scholar

    [5]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [6]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F 2017 Nat. Commun. 8 1672Google Scholar

    [7]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [8]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [9]

    Deng B, Tran V, Xie Y, Hao J, Cheng L, Guo Q, Wang X, He T, Koester S J, Han W 2017 Nat. Commun. 8 14474Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A, Zant H, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Feng X, Huang X, Chen L, Tan W C, Wang L, Ang K W 2018 Adv. Funct. Mater. 28 1801524Google Scholar

    [12]

    Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H, Lee C, Ang K W 2018 ACS Nano 13 913

    [13]

    Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280Google Scholar

    [14]

    Rajabali M, Esfandiari M, Rajabali S, Vakili-Tabatabaei M, Mohajerzadeh S, Mohajerzadeh S 2020 Adv. Mater. Interfaces 7 2000774Google Scholar

    [15]

    Rajabali M, Mohajerzadeh S 2019 Phys. Status Solidi RRL 13 1900197Google Scholar

    [16]

    Xu Y, Shi X, Zhang Y, Zhang H, Zhang K, Huang Z, Xu X, Guo J, Zhang H, Sun L, Zheng Z, Pan A, Zhang K 2020 Nat. Commun. 11 1330Google Scholar

    [17]

    Soo-Yeon C, Youhan L, Hyeong-Jun K, Hyunju J, Jong-Seon K 2016 Adv. Mater. 28 7020Google Scholar

    [18]

    Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H 2020 Nanoscale 12 3535Google Scholar

    [19]

    Prajapati Y K, Pal S, Verma A, Saini J P 2019 IET Optoelectron. 13 196Google Scholar

    [20]

    Kumar R, Pal S, Verma A, Prajapati Y K, Saini J P 2020 Superlattices Microstruct. 145 106591Google Scholar

    [21]

    Kumar P, Gupta M, Singh K 2020 Silicon 12 2809Google Scholar

    [22]

    Hui W, Yi C 2012 Nano Today 7 414Google Scholar

    [23]

    Obrovac M N, Christensen L 2004 Electrochem. Solid-State Lett. 7 A93Google Scholar

    [24]

    Pinson M B, Bazant M Z 2012 J. Electrochem. Soc. 160 A243Google Scholar

    [25]

    Carvalho A, Neto A 2015 ACS Central Sci. 1 289Google Scholar

    [26]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [27]

    Zhang C, Yu M, Anderson G, Dharmasena R R, Sumanasekera G 2017 Nanotechnology 28 075401Google Scholar

    [28]

    Sun J, Lee H, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y 2015 Nat. Nanotechnol. 10 980Google Scholar

    [29]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465Google Scholar

    [30]

    Arie A A, Lee J K 2013 Materials Science Forum 737 80Google Scholar

    [31]

    Domi Y, Usui H, Shimizu M, Kakimoto Y, Sakaguchi H 2016 ACS Appl. Mater. Interfaces 8 7125Google Scholar

    [32]

    Kim J S, Choi W, Byun D, Lee J K 2012 Solid State Ionics 212 43Google Scholar

    [33]

    Song J O, Shim H T, Byun D J, Lee J K 2007 Solid State Phenom. 124-126 1063Google Scholar

    [34]

    Yan C, Liu Q, Gao J, Yang Z, He D 2017 Beilstein J. Nanotechnol. 8 222Google Scholar

    [35]

    彭勃, 徐耀林, Fokko M 2017 物理化学学报 33 2127Google Scholar

    Peng B, Xu Y, Fokko M 2017 Acta Phys.-Chim. Sin. 33 2127Google Scholar

    [36]

    Shojaei F, Hahn J R, Kang H S 2016 J. Phys. Chem. C 120 17106Google Scholar

    [37]

    Olmedo E M, Garza C, Fomine S 2019 J. Mol. Model. 25 292Google Scholar

    [38]

    Segall M, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z, Tang W 2018 Nanoscale Res. Lett. 13 282Google Scholar

    [42]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [43]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2050191Google Scholar

    [44]

    Du Y, Ouyang C, Shi S, Lei M 2010 J. Appl. Phys. 107 0937181Google Scholar

    [45]

    Ge X, Zhou X H, Ye X, Chen X S 2020 Chem. Phys. Lett. 740 137075Google Scholar

    [46]

    Durajski A P, Gruszka K M, Niegodajew P 2020 Appl. Surf. Sci. 532 147377Google Scholar

    [47]

    El-Hachimi A G, Oubram O, Sadoqi M 2020 Superlattices Microstruct. 146 106673Google Scholar

    [48]

    Xu Y, Liu G, Xing S, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [49]

    Zhou Y, Zhang M, Guo Z Miao L 2017 Mater. Horiz. 4 997Google Scholar

    [50]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [51]

    Hou X H, Deng Z C, Zhang K 2017 Physica E 88 252Google Scholar

    [52]

    Ferrari A C, Meyer J C, Scardaci V 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [53]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [54]

    陈献, 程梅娟, 吴顺情, 朱梓忠 2017 物理学报 66 107102Google Scholar

    Chen X, Cheng M J, Wu S Q, Zhu Z Z 2017 Acta Phys. Sin. 66 107102Google Scholar

    [55]

    Sabzyan H, Sadeghpour N 2016 Z. Naturforsch. , A:Phys. Sci. 72 1Google Scholar

    [56]

    张国英, 焦兴强, 刘业舒, 张安国, 孟春雪 2020 物理学报 69 237101

    Zhang G Y, Jiao X Q, Liu Y S, Zhang A G, Meng C X 2020 Acta Phys. Sin. 69 237101

    [57]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [58]

    Rodin A S, Carvalho A, Neto A 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [59]

    Gazzari S, Wrighton-Araneda K, Cortés-Arriagada D 2020 Surf. Interfaces 21 100786Google Scholar

    [60]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [61]

    Cakır D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [62]

    Xie Z, Hui L, Wang J, Zhu G, Chen Z, Li C 2018 Comput. Mater. Sci. 144 304Google Scholar

    [63]

    Yan L, Yang S, Li J 2014 J. Phys. Chem. C 118 23970Google Scholar

    [64]

    Yu W Z, Yan J A, Gao S P 2015 Nanoscale Res. Lett. 10 351Google Scholar

    [65]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [66]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [67]

    Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S, Agarwal A 2016 Phys. Rev. B 93 195428Google Scholar

    [68]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. 90 0854021Google Scholar

    [69]

    Karki B, Freelon B, Rajapakse M, Musa R, Riyadh S, Morris B, Abu U, Yu M, Sumanasekera G, Jasinski J B 2020 Nanotechnology 31 425707Google Scholar

    [70]

    Li Y, Hu Z, Lin S, Lai S K, Wei J, Shu P L 2017 Adv. Funct. Mater. 27 1600986Google Scholar

    [71]

    Luis V G, Riccardo F, Andres C G 2019 Nanoscale 11 12080Google Scholar

    [72]

    Liang S, Hasan M, Seo J H 2019 Nanomaterials 9 566Google Scholar

    [73]

    Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [74]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [75]

    Tang H M, Gao S P 2019 Comput. Mater. Sci. ence 158 88Google Scholar

    [76]

    杨兆曜2017 硕士学位论文 (无锡: 江南大学)

    Yang Z Y 2017 M. D. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [77]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

  • 图 1  本征黑磷烯模型 (a)黑磷烯的主视图、俯视图、侧视图; (b)黑磷烯结构示意图

    Figure 1.  Intrinsic black phosphorene model: (a) Front view, top view, and side view of black phosphorene; (b) schematic diagram of the structure of black phosphorene.

    图 2  黑磷烯能带结构和DOS

    Figure 2.  Band structure and DOS of black phosphorene.

    图 3  黑磷烯吸附Si原子模型 (a)主视图; (b)示意图; (c) P原子编号示意图

    Figure 3.  Si adsorbed on black phosphorene model: (a) Main view; (b) diagrammatic sketch; (c) numbering diagram of P atom.

    图 4  黑磷烯吸附Si原子模型几何优化结构 (a) T位; (b) B位; (c) H位

    Figure 4.  Geometry optimization of Si adsorbed on black phosphorene model: (a) T site; (b) B site; (c) H site.

    图 5  黑磷体系能带结构 (a)本征黑磷烯; (b) T位吸附; (c) B位吸附; (d) H位吸附

    Figure 5.  Band structure of black phosphorene system: (a) Intrinsic black phosphorene; (b) T site adsorption; (c) B site adsorption; (d) H site adsorption.

    图 6  黑磷烯吸附体系DOS (a) T位; (b) B位; (c) H位

    Figure 6.  The DOS of Si adsorbed on black phosphorene system: (a) T site; (b) B site; (c) H site.

    图 7  (a)单个P原子DOS图; (b) P原子得失电子示意图; 红色球体代表得到电子的P原子, 蓝色球体代表失去电子的P原子

    Figure 7.  (a) DOS diagram of single P atom; (b) schematic diagram of gain and loss of electrons of P atom. The red sphere represents the P atom that gets electrons, and the blue sphere represents the P atom that loses electrons.

    图 8  黑磷烯电荷差分密度图 (a)本征黑磷烯; (b)黑磷烯吸附Si原子

    Figure 8.  Differential charge density of the black phosphorene: (a) Intrinsic black phosphorene; (b) Si adsorbed on black phosphorene system.

    图 9  本征黑磷烯与黑磷烯吸附体系电荷密度图 (a)主视图; (b)俯视图; (c)侧视图

    Figure 9.  Charge density diagram of the adsorption system of intrinsic black phosphorene and black phosphorene: (a) Main view; (b) top view; (c) side view.

    图 10  考虑泊松比前后、拉伸形变量为2%的黑磷烯能带结构 (a)纯黑磷烯; (b)黑磷烯吸附Si原子; (c)电场与形变共作用的纯黑磷烯; (d) 电场与形变共作用的黑磷烯吸附Si原子

    Figure 10.  Band structure of black phosphorene with 2% tensile deformation before and after considering Poisson’s ratio (a) Pure BP, (b) Si absorbed on BP, (c) pure BP with co-action of electric field and deformation, (d) Si absorbed on BP with co-action of electric field and deformation.

    图 11  (a)—(e)拉伸形变量为2%—10%的黑磷烯能带结构; (f)—(j)拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构

    Figure 11.  (a)−(e) Band structure of black phosphorene with 2%−10% tensile deformation; (f)−(j) band structure of Si adsorbed on black phosphorene with 2%−10% tensile deformation.

    图 12  (a)形变为8%的黑磷烯结构俯视图; (b)形变为8%的黑磷烯电荷差分密度

    Figure 12.  (a) Top view of the structure of 8% tensile deformation black phosphorene; (b) differential charge density of 8% tensile deformation phosphorene.

    图 13  (a)—(e)拉伸形变量为2%—10%的纯黑磷烯(BP)以及黑磷烯吸附Si原子体系(BP-Si)态密度结构; (f)黑磷烯带隙变化曲线

    Figure 13.  (a)−(e) The DOS of black phosphorene (BP) and Si adsorbed on black phosphorene (BP-Si) with 2%−10% tensile deformation; (f) band gap curves of black phosphorene.

    图 14  电场作用下纯黑磷烯与黑磷烯吸附Si原子体系 (a), (b)能带结构, 其中蓝色虚线代表黑磷及黑磷烯吸附体系的能带结构, 黑色实现代表电场作用下黑磷烯及其吸附体系的能带结构; (c) DOS结构

    Figure 14.  Si adsorbed on black phosphorene system and pure black phosphorene under electric field: (a), (b) Band structure, the blue dotted line represents the energy band structure of black phosphorus and black phosphorene adsorption system, and the black realization represents the energy band structure of black phosphorus and its adsorption system under the action of electric field; (c) DOS.

    图 15  (a)—(e)电场作用下拉伸形变量为2%—10%的黑磷烯能带结构; (f)—(j)电场作用下拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构

    Figure 15.  (a)−(e) Band structure of black phosphorene with 2%−10% tensile deformation under electric field; (f)−(j) band structure of Si adsorbed on black phosphorene system with 2%−10% tensile deformation under electric field.

    图 16  (a)—(e)电场作用下拉伸形变量为2%—10%的黑磷烯吸附Si原子体系能带结构; (f)黑磷烯带隙变化曲线

    Figure 16.  (a)−(e) Band structure of Si adsorbed on black phosphorene system with 2%−10% tensile deformation under the action of electric field; (f) band gap curves of black phosphorene.

    表 1  吸附原子所在原子环的P—P键键长与Si原子吸附高度

    Table 1.  Relationship between P—P bond length and Si adsorption height.

    吸附位P—Si/P—P(1)/ÅP—P(2)/ÅP—P(3)/ÅP—P(4)/Åd0
    T2.2832.2142.2062.2062.2071.138
    B2.2362.2562.1862.2362.2121.880
    H2.3122.2212.2002.2042.2301.160
    DownLoad: CSV

    表 2  P原子间键长及键级

    Table 2.  Bond length and bond order between P atoms.

    P4—P10, P34—P4P10—P16, P28—P34P16—P22, P22—P28本征P—PP16, 28—SiP20—Si
    键长/Å2.1622.4972.2102.2102.3312.312
    键级0.481.000.450.470.420.33
    DownLoad: CSV

    表 3  P原子的Mulliken电荷布居数

    Table 3.  Mulliken charge population of P atom.

    原子编号P10, 34P16, 28P11, 35P8, 12, 13, 25, 32, 36P1, 7, 9, 17, 24, 29, 31, 33P2, 15, 18, 19, 23, 27, 30P3, 4, 14, 26P5, 22P6P20P21Si
    Total/e5.105.065.045.025.014.994.984.974.964.944.933.78
    Charge/e–0.10–0.06–0.04–0.02–0.010.010.020.030.040.060.070.22
    DownLoad: CSV

    表 4  拉伸形变作用下纯黑磷烯单原子结合能和黑磷烯吸附Si原子吸附能

    Table 4.  Monoatomic binding energy of black phosphorene and adsorption energy of Si adsorbed on black phosphorene under tensile deformation.

    形变量/%0246810
    结合能/eV–5.774–5.755–5.719–5.703–5.701–5.688
    吸附能/eV3.9703.9143.8643.6833.6523.657
    DownLoad: CSV

    表 5  电场与拉伸共作用下纯黑磷烯单原子结合能和黑磷烯吸附Si原子吸附能

    Table 5.  Single atom binding energy of black phosphorene and adsorption energy of Si adsorbed on black phosphorene system under the action of electric field and tensile.

    形变量/%0246810
    结合能/eV–2.507–2.485–2.457–2.439–2.433–2.421
    吸附能/eV3.4613.4203.3663.2543.2143.210
    DownLoad: CSV
  • [1]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [2]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [3]

    James B, Matin A, Joy C, Chen Y Z, Ho A G, Valerio A, Raj S V, Yang G, Crozier K B, Yu-Lun C 2018 Nat. Photonics 12 601Google Scholar

    [4]

    Avsar A, Tan J Y, Kurpas M, Gmitra M, Watanabe K, Taniguchi T, Fabian J, Özyilmaz B 2017 Nat. Phys. 13 888Google Scholar

    [5]

    Li L, Yang F, Ye G J, Zhang Z, Zhu Z, Lou W, Zhou X, Li L, Watanabe K, Taniguchi T, Chang K, Wang Y, Chen X H, Zhang Y 2016 Nat. Nanotechnol. 11 593Google Scholar

    [6]

    Chen X, Lu X, Deng B, Sinai O, Shao Y, Li C, Yuan S, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F 2017 Nat. Commun. 8 1672Google Scholar

    [7]

    Youngblood N, Chen C, Koester S J, Li M 2015 Nat. Photonics 9 247Google Scholar

    [8]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [9]

    Deng B, Tran V, Xie Y, Hao J, Cheng L, Guo Q, Wang X, He T, Koester S J, Han W 2017 Nat. Commun. 8 14474Google Scholar

    [10]

    Buscema M, Groenendijk D J, Steele G A, Zant H, Castellanos-Gomez A 2014 Nat. Commun. 5 4651Google Scholar

    [11]

    Feng X, Huang X, Chen L, Tan W C, Wang L, Ang K W 2018 Adv. Funct. Mater. 28 1801524Google Scholar

    [12]

    Huang L, Dong B, Guo X, Chang Y, Chen N, Huang X, Liao W, Zhu C, Wang H, Lee C, Ang K W 2018 ACS Nano 13 913

    [13]

    Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280Google Scholar

    [14]

    Rajabali M, Esfandiari M, Rajabali S, Vakili-Tabatabaei M, Mohajerzadeh S, Mohajerzadeh S 2020 Adv. Mater. Interfaces 7 2000774Google Scholar

    [15]

    Rajabali M, Mohajerzadeh S 2019 Phys. Status Solidi RRL 13 1900197Google Scholar

    [16]

    Xu Y, Shi X, Zhang Y, Zhang H, Zhang K, Huang Z, Xu X, Guo J, Zhang H, Sun L, Zheng Z, Pan A, Zhang K 2020 Nat. Commun. 11 1330Google Scholar

    [17]

    Soo-Yeon C, Youhan L, Hyeong-Jun K, Hyunju J, Jong-Seon K 2016 Adv. Mater. 28 7020Google Scholar

    [18]

    Tyagi D, Wang H, Huang W, Hu L, Tang Y, Guo Z, Ouyang Z, Zhang H 2020 Nanoscale 12 3535Google Scholar

    [19]

    Prajapati Y K, Pal S, Verma A, Saini J P 2019 IET Optoelectron. 13 196Google Scholar

    [20]

    Kumar R, Pal S, Verma A, Prajapati Y K, Saini J P 2020 Superlattices Microstruct. 145 106591Google Scholar

    [21]

    Kumar P, Gupta M, Singh K 2020 Silicon 12 2809Google Scholar

    [22]

    Hui W, Yi C 2012 Nano Today 7 414Google Scholar

    [23]

    Obrovac M N, Christensen L 2004 Electrochem. Solid-State Lett. 7 A93Google Scholar

    [24]

    Pinson M B, Bazant M Z 2012 J. Electrochem. Soc. 160 A243Google Scholar

    [25]

    Carvalho A, Neto A 2015 ACS Central Sci. 1 289Google Scholar

    [26]

    Carvalho A, Wang M, Zhu X, Rodin A S, Su H, Neto A C 2016 Nat. Rev. Mater. 1 16061Google Scholar

    [27]

    Zhang C, Yu M, Anderson G, Dharmasena R R, Sumanasekera G 2017 Nanotechnology 28 075401Google Scholar

    [28]

    Sun J, Lee H, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y 2015 Nat. Nanotechnol. 10 980Google Scholar

    [29]

    Park C M, Sohn H J 2007 Adv. Mater. 19 2465Google Scholar

    [30]

    Arie A A, Lee J K 2013 Materials Science Forum 737 80Google Scholar

    [31]

    Domi Y, Usui H, Shimizu M, Kakimoto Y, Sakaguchi H 2016 ACS Appl. Mater. Interfaces 8 7125Google Scholar

    [32]

    Kim J S, Choi W, Byun D, Lee J K 2012 Solid State Ionics 212 43Google Scholar

    [33]

    Song J O, Shim H T, Byun D J, Lee J K 2007 Solid State Phenom. 124-126 1063Google Scholar

    [34]

    Yan C, Liu Q, Gao J, Yang Z, He D 2017 Beilstein J. Nanotechnol. 8 222Google Scholar

    [35]

    彭勃, 徐耀林, Fokko M 2017 物理化学学报 33 2127Google Scholar

    Peng B, Xu Y, Fokko M 2017 Acta Phys.-Chim. Sin. 33 2127Google Scholar

    [36]

    Shojaei F, Hahn J R, Kang H S 2016 J. Phys. Chem. C 120 17106Google Scholar

    [37]

    Olmedo E M, Garza C, Fomine S 2019 J. Mol. Model. 25 292Google Scholar

    [38]

    Segall M, Lindan P, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [39]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 77 3865Google Scholar

    [40]

    Heyd J, Scuseria G E 2003 J. Chem. Phys. 118 8207Google Scholar

    [41]

    Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z, Tang W 2018 Nanoscale Res. Lett. 13 282Google Scholar

    [42]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [43]

    Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2050191Google Scholar

    [44]

    Du Y, Ouyang C, Shi S, Lei M 2010 J. Appl. Phys. 107 0937181Google Scholar

    [45]

    Ge X, Zhou X H, Ye X, Chen X S 2020 Chem. Phys. Lett. 740 137075Google Scholar

    [46]

    Durajski A P, Gruszka K M, Niegodajew P 2020 Appl. Surf. Sci. 532 147377Google Scholar

    [47]

    El-Hachimi A G, Oubram O, Sadoqi M 2020 Superlattices Microstruct. 146 106673Google Scholar

    [48]

    Xu Y, Liu G, Xing S, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar

    [49]

    Zhou Y, Zhang M, Guo Z Miao L 2017 Mater. Horiz. 4 997Google Scholar

    [50]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [51]

    Hou X H, Deng Z C, Zhang K 2017 Physica E 88 252Google Scholar

    [52]

    Ferrari A C, Meyer J C, Scardaci V 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [53]

    Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar

    [54]

    陈献, 程梅娟, 吴顺情, 朱梓忠 2017 物理学报 66 107102Google Scholar

    Chen X, Cheng M J, Wu S Q, Zhu Z Z 2017 Acta Phys. Sin. 66 107102Google Scholar

    [55]

    Sabzyan H, Sadeghpour N 2016 Z. Naturforsch. , A:Phys. Sci. 72 1Google Scholar

    [56]

    张国英, 焦兴强, 刘业舒, 张安国, 孟春雪 2020 物理学报 69 237101

    Zhang G Y, Jiao X Q, Liu Y S, Zhang A G, Meng C X 2020 Acta Phys. Sin. 69 237101

    [57]

    Tran V, Soklaski R, Liang Y, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [58]

    Rodin A S, Carvalho A, Neto A 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [59]

    Gazzari S, Wrighton-Araneda K, Cortés-Arriagada D 2020 Surf. Interfaces 21 100786Google Scholar

    [60]

    Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar

    [61]

    Cakır D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar

    [62]

    Xie Z, Hui L, Wang J, Zhu G, Chen Z, Li C 2018 Comput. Mater. Sci. 144 304Google Scholar

    [63]

    Yan L, Yang S, Li J 2014 J. Phys. Chem. C 118 23970Google Scholar

    [64]

    Yu W Z, Yan J A, Gao S P 2015 Nanoscale Res. Lett. 10 351Google Scholar

    [65]

    Lü H Y, Lu W J, Shao D F, Sun Y P 2014 Phys. Rev. B 90 085433Google Scholar

    [66]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [67]

    Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S, Agarwal A 2016 Phys. Rev. B 93 195428Google Scholar

    [68]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. 90 0854021Google Scholar

    [69]

    Karki B, Freelon B, Rajapakse M, Musa R, Riyadh S, Morris B, Abu U, Yu M, Sumanasekera G, Jasinski J B 2020 Nanotechnology 31 425707Google Scholar

    [70]

    Li Y, Hu Z, Lin S, Lai S K, Wei J, Shu P L 2017 Adv. Funct. Mater. 27 1600986Google Scholar

    [71]

    Luis V G, Riccardo F, Andres C G 2019 Nanoscale 11 12080Google Scholar

    [72]

    Liang S, Hasan M, Seo J H 2019 Nanomaterials 9 566Google Scholar

    [73]

    Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S 2011 Prog. Mater. Sci. 56 1178Google Scholar

    [74]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [75]

    Tang H M, Gao S P 2019 Comput. Mater. Sci. ence 158 88Google Scholar

    [76]

    杨兆曜2017 硕士学位论文 (无锡: 江南大学)

    Yang Z Y 2017 M. D. Thesis (Wuxi: Jiangnan University) (in Chinese)

    [77]

    Jiang J W, Park H S 2014 Nat. Commun. 5 4727Google Scholar

  • [1] Bai Wen-Qing, Yang Jiang-Tao, Yang Cui-Hong, Chen Yun-Yun. Interband optical conductivity in electromagnetic field modulated strained black phosphorene. Acta Physica Sinica, 2024, 73(13): 137803. doi: 10.7498/aps.73.20240445
    [2] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [3] Liu Jia-Wen, Yao Ruo-He, Liu Yu-Rong, Geng Kui-Wei. A physical model of cylindrical surrounding double-gate metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [4] Yao Jia-Feng, Hu Song-Pei, Yang Lu, Wu Yang, Han Wei, Liu Kai. Tongue tumor tissue recognition based on bioelectrical impedance spectroscopy. Acta Physica Sinica, 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [5] Yao Jia-Feng, Wan Jian-Fen, Yang Lu, Liu Kai, Chen Bai, Wu Hong-Tao. Electrical characteristics of cells with electrical impedance spectroscopy. Acta Physica Sinica, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [6] Zhang Guo-Ying, Jiao Xing-Qiang, Liu Ye-Shu, Zhang An-Guo, Meng Chun-Xue. Electronic theoretical study on sensing behaviors of defects and doping coexistence of black phosphorene to formaldehyde. Acta Physica Sinica, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [7] Song Hang, Liu Jie, Chen Chao, Ba Long. Graphene-based field effect transistor with ion-gel film gate. Acta Physica Sinica, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] Liu Gui-Li, Yang Zhong-Hua. First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene. Acta Physica Sinica, 2018, 67(7): 076301. doi: 10.7498/aps.67.20172491
    [9] Fan Da-Zhi, Liu Gui-Li, Wei Lin. Electron-theoretical study on the influences of torsional deformation on electrical and optical properties of O atom absorbed graphene. Acta Physica Sinica, 2017, 66(24): 246301. doi: 10.7498/aps.66.246301
    [10] Zhang Hui, Cai Xiao-Ming, Hao Zhen-Liang, Ruan Zi-Lin, Lu Jian-Chen, Cai Jin-Ming. Fabrication and electrical engineering of graphene nanoribbons. Acta Physica Sinica, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [11] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. Analysis of electrical property parameters of CdS/CdTe solar cells fabricated by close space-sublimation. Acta Physica Sinica, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [12] Wei Xiao-Lin, Chen Yuan-Ping, Wang Ru-Zhi, Zhong Jian-Xin. Studies on electrical properties of graphene nanoribbons with pore defects. Acta Physica Sinica, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [13] Ma Li, Wang Dong-Fang, Gao Yong, Zhang Ru-Liang. Effects of p and n pillar widths on electrical characteristicsof super junction SiGe power diodes. Acta Physica Sinica, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [14] Luo Zhen-Fei, Wu Zhi-Ming, Xu Xiang-Dong, Wang Tao, Jiang Ya-Dong. Aging in the electrical properties of nanostructured vanadium oxide thin film exposed to air. Acta Physica Sinica, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [15] Xu Guo-Liang, Xia Yao-Zheng, Liu Xue-Feng, Zhang Xian-Zhou, Liu Yu-Fang. Effect of external electric field excitation on titanium monoxide. Acta Physica Sinica, 2010, 59(11): 7762-7768. doi: 10.7498/aps.59.7762
    [16] Han Wen-Peng, Liu Hong. Band structures of strain-deformed BC3 nanotubes. Acta Physica Sinica, 2010, 59(6): 4194-4201. doi: 10.7498/aps.59.4194
    [17] Huang Duo-Hui, Wang Fan-Hou, Min Jun, Zhu Zheng-He. Study on structure characteristics of MgO molecule under external electric field. Acta Physica Sinica, 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
    [18] Wei Yong, Tong Guo-Ping. Effect of the tensile force on the electronic energy gap of graphene sheets. Acta Physica Sinica, 2009, 58(3): 1931-1935. doi: 10.7498/aps.58.1931
    [19] Qiu Dong-Jiang, Wang Jun, Ding Kou-Bao, Shi Hong-Jun, Jia Yin. Influence of annealing on the properties of Mn and N co-doped Zn0.88Mn0.12O:N films. Acta Physica Sinica, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [20] Xu Guo-Liang, Liu Yu-Fang, Sun Jin-Feng, Zhang Xian-Zhou, Zhu Zheng-He. Study on the structural properties of SiO molecule under the external electric field. Acta Physica Sinica, 2007, 56(10): 5704-5708. doi: 10.7498/aps.56.5704
Metrics
  • Abstract views:  4504
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  27 April 2021
  • Accepted Date:  01 July 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回