Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Interband optical conductivity in electromagnetic field modulated strained black phosphorene

Bai Wen-Qing Yang Jiang-Tao Yang Cui-Hong Chen Yun-Yun

Citation:

Interband optical conductivity in electromagnetic field modulated strained black phosphorene

Bai Wen-Qing, Yang Jiang-Tao, Yang Cui-Hong, Chen Yun-Yun
PDF
HTML
Get Citation
  • Black phosphorene (BP) has been widely investigated for its anisotropic and unique photoelectric properties. Strain, voltage and so on are commonly used to modulate the energy band structure and accordingly its photoelectric characteristics. In this study, we consider the energy band structure of BP in the vertical magnetic field, electric field, and in-plane/out-of-plane strains by using the tight-binding approximate Hamiltonian. The anisotropic frequency-dependent interband optical conductivity (IOC) of BP is investigated by using the Kubo formula in these modulation factors. Inherent asymmetry in band dispersion along the armchair (AC) direction and the zigzag (ZZ) direction leads to anisotropic IOC. The introduction of a vertical magnetic field induces band splitting, thereby generating multiple interband transition channels. In this case, the IOC along both the AC direction and the ZZ direction exhibits three peaks around the original peak position, and the magnitudes of the peaks are also modulated. With the increase of in-plane strain (from –20% to 20%), the band gap increases monotonically, and both the position and magnitude of the peaks vary with band gap changing. However, the band gap of BP undergoes a non-monotonic change under out-of-plane strain (from –20% to 20%), which is different from the change under in-plane strain. The band gap reaches a minimum value when a tensile strain of 12% is applied. Along the AC direction, the modulation of the IOC by in-plane strain is opposite to the modulation of out-of-plane strain (εz < 12%), indicating a competitive effect when triaxial strains are applied. Along the ZZ direction, in-plane strain primarily modulates the peak magnitude, while out-of-plane strain effectively modulates not only the peak position but also the peak magnitude obviously. The modulation of the IOC by forward and reverse electric fields are symmetrical. The coefficient for the peak position shift due to the vertical electric field is 1/2 in the AC direction and 1/10 in the ZZ direction. By integrating various modulation factors, we achieve versatile control over the energy band and IOC of BP, providing theoretical support for the application of BP in optoelectronic devices.
      Corresponding author: Yang Cui-Hong, chyang@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11547030).
    [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [5]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [6]

    Jain A, McGaughey A J H 2015 Sci. Rep. 5 8501Google Scholar

    [7]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Ezawa M 2014 New J. Phys. 16 115004Google Scholar

    [9]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [10]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [11]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [12]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [13]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [14]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [15]

    Dai J, Zeng X C 2014 J. Phys. Chem. Lett. 5 1289Google Scholar

    [16]

    Chen X L, Lu X B, Deng B C, et al. 2017 Nat. Commun. 8 1672Google Scholar

    [17]

    Li L K, Yang F Y, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [18]

    Pereira Jr J M, Katsnelson M I 2015 Phys. Rev. B 92 075437Google Scholar

    [19]

    Zhou X Y, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [20]

    Phuong L T T, Phong T C, Yarmohammadi M 2020 Sci. Rep. 10 9201Google Scholar

    [21]

    Keshtan M A M, Esmaeilzadeh M 2015 J. Phys. D: Appl. Phys. 48 485301Google Scholar

    [22]

    Wang Y, Guo Y L, Wang Z K, et al. 2021 ACS Nano 15 12069Google Scholar

    [23]

    Wang Y, Xu W, Fu L, et al. 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [24]

    Wang Y, Xu W, Yang D Y, et al. 2023 ACS Nano 17 24320Google Scholar

    [25]

    Li P K, Appelbaum I 2014 Phys. Rev. B 90 115439Google Scholar

    [26]

    Le P T T, Yarmohammadi M 2019 J. Magn. Magn. Mater. 491 165629Google Scholar

    [27]

    Rudenko A N, Katsnelson M I 2014 Phys. Rev. B 89 201408Google Scholar

    [28]

    Yang C H, Zhang J Y, Wang G X, Zhang C 2018 Phys. Rev. B 97 245408Google Scholar

    [29]

    Jiang J W, Park H S 2015 Phys. Rev. B 91 235118Google Scholar

    [30]

    Khang P D, Davoudiniya M, Phuong L T T, Phong T C, Yarmohammadi M 2019 Phys. Chem. Chem. Phys. 21 15133Google Scholar

    [31]

    Yang C H, Zhang J Y, Wieser R, Xu W 2022 J. Phys. D: Appl. Phys. 55 085103Google Scholar

    [32]

    Le P T T, Mirabbaszadeh K, Yarmohammadi M 2019 J. Appl. Phys. 125 193101Google Scholar

  • 图 1  黑磷烯晶格结构示意图 (a) 三维; (b) 二维

    Figure 1.  Schematic diagram of lattice structure of BP: (a) Three-dimensional; (b) two-dimensional.

    图 2  黑磷烯能带示意图 (a) 磁场下; (b) 电场下; (c) x轴应变下

    Figure 2.  Energy band structure of BP in the presence: (a) Magnetic field; (b) electric field; (c) x-axis strain.

    图 3  同时施加磁场和应变下的黑磷烯带隙(虚线1.52对应的是本征带隙的位置) (a) 施加x轴应变 ; (b) 施加y轴应变; (c) 施加z轴应变

    Figure 3.  Bandgap of BP in the presence of the magnetic field and strain applied along (Dashed line corresponds to the position of the intrinsic band gap): (a) x-axis; (b) y-axis; (c) z-axis.

    图 4  同时施加电场和应变下的黑磷烯带隙(虚线1.52对应的是本征带隙的位置) (a) 施加x轴应变; (b) 施加y轴应变; (c) 施加z轴应变

    Figure 4.  Bandgap of BP in the presence of the electric field and strain applied along (Dashed line corresponds to the position of the intrinsic band gap): (a) x-axis; (b) y-axis; (c) z-axis.

    图 5  AC方向的带间光电导率在不同x轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下的光电导实部; (b), (d) 不同磁场下的光电导虚部. 黑色、红色和蓝色曲线分别表示无应变、压缩应变和拉伸应变下的结果

    Figure 5.  Interband optical conductivity along the AC direction as a function of the incident photon energy at different x-axial strain: (a), (c) Real part under different magnetic fields; (b), (d) the imaginary part under different magnetic fields. Black, red, and blue curves represent the results with no strain, compressive strain, and tensile strain, respectively.

    图 8  带间光电导率实部在不同z轴应变条件下随入射光能量的变化 (a), (c)不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Figure 8.  Real part of the interband optical conductivity as a function of the incident photon energy at different z-axial strain: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) results along the ZZ direction under different magnetic fields.

    图 7  带间光电导率实部在不同y轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Figure 7.  Real part of the interband optical conductivity as a function of the incident photon energy at different y-axial strain: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) the results along the ZZ direction under different magnetic fields.

    图 6  ZZ方向的带间光电导率在不同x轴应变条件下随入射光能量的变化 (a), (c) 不同磁场下的光电导实部; (b), (d) 不同磁场下的光电导虚部

    Figure 6.  Interband optical conductivity along the ZZ direction as a function of the incident photon energy at different x-axial strain: (a), (c) Real part under different magnetic fields; (b), (d) the imaginary part under different magnetic fields.

    图 9  带间光电导率实部在三轴应变条件下随入射光能量的变化 (a), (c)不同磁场下AC方向的结果; (b), (d)不同磁场下ZZ方向的结果

    Figure 9.  Real part of the interband optical conductivity as a function of the incident photon energy at different triaxial strains: (a), (c) Results along the AC direction under different magnetic fields; (b), (d) the results along the ZZ direction under different magnetic fields.

    图 10  带间光电导率实部在三轴应变条件下随入射光能量的变化 (a), (c) 不同电场下AC方向的结果; (b), (d) 不同电场下ZZ方向的结果

    Figure 10.  Real part of the interband optical conductivity as a function of the incident photon energy at different triaxial strains: (a), (c) Results along the AC direction under different electric fields; (b), (d) the results along the ZZ direction under different electric fields.

    表 1  黑磷烯的跳变参数与晶格常数[27,28]

    Table 1.  Hopping energy and lattice parameter of BP[27,28].

    ti 具体数值/eV ai 具体数值/Å
    t1 –1.22 a1 1.41763
    t2 3.665 a2 0.79732
    t3 –0.205 a3 3.01227
    t4 –0.105 a4 2.21468
    t5 –0.055 a5 3.63258
    DownLoad: CSV

    表 2  黑磷烯的应变系数[29,30]

    Table 2.  Strain coefficient of BP[29,30].

    γ$ \alpha _{1}^\gamma $$ \alpha _{2}^\gamma $$ \alpha _{3}^\gamma $$ \alpha _{4}^\gamma $$ \alpha _{5}^\gamma $
    x0.44600.09920.75050.39760.7530
    y0.557100.24610.22800
    z00.905200.37220.2538
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, et al. 2004 Science 306 666Google Scholar

    [2]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [4]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [5]

    Xia F N, Wang H, Jia Y C 2014 Nat. Commun. 5 4458Google Scholar

    [6]

    Jain A, McGaughey A J H 2015 Sci. Rep. 5 8501Google Scholar

    [7]

    Qiao J S, Kong X H, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [8]

    Ezawa M 2014 New J. Phys. 16 115004Google Scholar

    [9]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 235319Google Scholar

    [10]

    Li L K, Kim J, Jin C H, et al. 2017 Nat. Nanotechnol. 12 21Google Scholar

    [11]

    Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J, Kim K S 2015 Science 349 723Google Scholar

    [12]

    Peng X H, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [13]

    Rodin A S, Carvalho A, Castro Neto A H 2014 Phys. Rev. Lett. 112 176801Google Scholar

    [14]

    Fei R, Yang L 2014 Nano Lett. 14 2884Google Scholar

    [15]

    Dai J, Zeng X C 2014 J. Phys. Chem. Lett. 5 1289Google Scholar

    [16]

    Chen X L, Lu X B, Deng B C, et al. 2017 Nat. Commun. 8 1672Google Scholar

    [17]

    Li L K, Yang F Y, Ye G J, et al. 2016 Nat. Nanotechnol. 11 593Google Scholar

    [18]

    Pereira Jr J M, Katsnelson M I 2015 Phys. Rev. B 92 075437Google Scholar

    [19]

    Zhou X Y, Lou W K, Zhai F, Chang K 2015 Phys. Rev. B 92 165405Google Scholar

    [20]

    Phuong L T T, Phong T C, Yarmohammadi M 2020 Sci. Rep. 10 9201Google Scholar

    [21]

    Keshtan M A M, Esmaeilzadeh M 2015 J. Phys. D: Appl. Phys. 48 485301Google Scholar

    [22]

    Wang Y, Guo Y L, Wang Z K, et al. 2021 ACS Nano 15 12069Google Scholar

    [23]

    Wang Y, Xu W, Fu L, et al. 2023 ACS Appl. Mater. Interfaces 15 54797Google Scholar

    [24]

    Wang Y, Xu W, Yang D Y, et al. 2023 ACS Nano 17 24320Google Scholar

    [25]

    Li P K, Appelbaum I 2014 Phys. Rev. B 90 115439Google Scholar

    [26]

    Le P T T, Yarmohammadi M 2019 J. Magn. Magn. Mater. 491 165629Google Scholar

    [27]

    Rudenko A N, Katsnelson M I 2014 Phys. Rev. B 89 201408Google Scholar

    [28]

    Yang C H, Zhang J Y, Wang G X, Zhang C 2018 Phys. Rev. B 97 245408Google Scholar

    [29]

    Jiang J W, Park H S 2015 Phys. Rev. B 91 235118Google Scholar

    [30]

    Khang P D, Davoudiniya M, Phuong L T T, Phong T C, Yarmohammadi M 2019 Phys. Chem. Chem. Phys. 21 15133Google Scholar

    [31]

    Yang C H, Zhang J Y, Wieser R, Xu W 2022 J. Phys. D: Appl. Phys. 55 085103Google Scholar

    [32]

    Le P T T, Mirabbaszadeh K, Yarmohammadi M 2019 J. Appl. Phys. 125 193101Google Scholar

  • [1] Li Yong-Ning, Xie Yi-Qun, Wang Yin. Strain control of two-dimensional ferroelectric In2Se3/InSe vertical heterojunction energy band. Acta Physica Sinica, 2021, 70(22): 227701. doi: 10.7498/aps.70.20211158
    [2] Wei Lin, Liu Gui-Li, Wang Jia-Xin, Mu Guang-Yao, Zhang Guo-Ying. Density functional theory study on influence of tensile deformation and electric field on electrical properties of Si atom adsorbed on black phosphorene. Acta Physica Sinica, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Zhang Guo-Ying, Jiao Xing-Qiang, Liu Ye-Shu, Zhang An-Guo, Meng Chun-Xue. Electronic theoretical study on sensing behaviors of defects and doping coexistence of black phosphorene to formaldehyde. Acta Physica Sinica, 2020, 69(23): 237101. doi: 10.7498/aps.69.20200990
    [5] Cai Cheng-Xin, Chen Shao-Geng, Wang Xue-Mei, Liang Jun-Yan, Wang Zhao-Hong. Phononic band structure and figure of merit of three-dimensional anisotropic asymmetric double-cone pentamode metamaterials. Acta Physica Sinica, 2020, 69(13): 134302. doi: 10.7498/aps.69.20200364
    [6] Ma Hao-Hao, Zhang Xian-Bin, Wei Xu-Yan, Cao Jia-Meng. Theoretical study on Schottky regulation of WSe2/graphene heterostructure doped with nonmetallic elements. Acta Physica Sinica, 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [7] Zhang Zhong-Qiang, Liu Han-Lun, Fan Jin-Wei, Ding Jian-Ning, Cheng Guang-Gui. Pressure-driven fluid flow characteristics in black phosphorus nanochannels. Acta Physica Sinica, 2019, 68(17): 170202. doi: 10.7498/aps.68.20190531
    [8] Wei Xiang-Fei, He Rui, Zhang Gang, Liu Xiang-Yuan. Terahertz photoconductivity in InAs/GaSb based quantum well system. Acta Physica Sinica, 2018, 67(18): 187301. doi: 10.7498/aps.67.20180769
    [9] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [10] Chen Xiao-Lan, Zhang Yun, Ran Qi-Yi. Photo-conductivity decay properties of Fe-doped congruent lithium niobate crystals. Acta Physica Sinica, 2013, 62(3): 037201. doi: 10.7498/aps.62.037201
    [11] Xu Jia, Dong Zhan-Min, Li Yi, Sun Jia-Lin, Sun Hong-San. Fabrication, temperature-conductance and photoconductance characteristics of the macroscopic-long Ag2S nanowire bundle. Acta Physica Sinica, 2011, 60(7): 077304. doi: 10.7498/aps.60.077304
    [12] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [13] Meng Fan-Yi, Wu Qun, Fu Jia-Hui, Gu Xue-Mai, Li Le-Wei. Resonance characteristics of a three-dimensional anisotropic metamaterial bilayer. Acta Physica Sinica, 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [14] Zhou Jian-Hua, Liu Hong-Yao, Luo Hai-Lu, Wen Shuang-Chun. Backward wave propagation in anisotropic metamaterials. Acta Physica Sinica, 2008, 57(12): 7729-7736. doi: 10.7498/aps.57.7729
    [15] Weng Zi-Mei, Chen Hao. Solitons in a one-dimensional ferromagnetic chain under the influence of single-ion anisotropy. Acta Physica Sinica, 2007, 56(4): 1911-1918. doi: 10.7498/aps.56.1911
    [16] Yang Hong-Wei, Yuan Hong, Chen Ru-Shan, Yang Yang. SO-FDTD analysis of anisotropic magnetized plasma. Acta Physica Sinica, 2007, 56(3): 1443-1446. doi: 10.7498/aps.56.1443
    [17] Mu Quan-Quan, Liu Yong-Jun, Hu Li-Fa, Li Da-Yu, Cao Zhao-Liang, Xuan Li. Determination of anisotropic liquid crystal layer parameters by spectroscopic ellipsometer. Acta Physica Sinica, 2006, 55(3): 1055-1060. doi: 10.7498/aps.55.1055
    [18] Zhang Shi-Bin, Kong Guang-Lin, Xu Yan-Yue, Wang Yong-Qian, Diao Hong-Wei, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [19] YUAN XIAN-ZHANG, PEI HUI-YUAN, LU WEI, LI NING, SHI GUO-LIANG, FANG JIA-XIONG, SHEN XUE-CHU. INFRAREDPHOTOCONDUCTIVITYSPECTRAOFDEEPLEVELS IN Zn0.04Cd0.96Te. Acta Physica Sinica, 2001, 50(4): 775-778. doi: 10.7498/aps.50.775
    [20] ZHANG DE-HENG, LIU YUN-YAN, ZHANG DE-JUN. THE UV PHOTOCONDUCTIVITY OF n-TYPE GaN FILMSDEPOSITED BY MOCVD. Acta Physica Sinica, 2001, 50(9): 1800-1804. doi: 10.7498/aps.50.1800
Metrics
  • Abstract views:  1137
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2024
  • Accepted Date:  08 May 2024
  • Available Online:  24 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回