搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生物阻抗谱的舌体肿瘤组织识别方法

姚佳烽 胡松佩 杨璐 吴阳 韩伟 刘凯

引用本文:
Citation:

基于生物阻抗谱的舌体肿瘤组织识别方法

姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯

Tongue tumor tissue recognition based on bioelectrical impedance spectroscopy

Yao Jia-Feng, Hu Song-Pei, Yang Lu, Wu Yang, Han Wei, Liu Kai
PDF
HTML
导出引用
  • 基于生物阻抗谱技术, 提出一种非侵入式、快速、便捷的舌体肿瘤组织识别方法. 根据舌体组织不同病理及生理状态下电学特性的差异性来判断其是否病变, 以帮助主刀医师在临床舌体肿瘤手术切除中既能完整的切除肿瘤又能尽可能多的保留患者舌功能. 本文在小鼠上建立了人舌鳞癌细胞(HSC3)原位舌癌移植瘤模型, 用生物阻抗谱的方法对其正常组织区域、混有肿瘤组织区域及肿瘤组织区域进行了电学特性研究. 幅值频谱显示在8.09 × 105 —5 × 106 Hz的高频段可以根据其电学特性区分3种组织. 在实验过程中, 从高频段的幅值频谱中提取出弛豫频率frelax、电阻抗实部${{{Z}}'_{\rm{relax}}}$和电阻抗虚部${{{Z}}''_{\rm{relax}}}$ 3个电学参数, 并根据这3个电学参数定义癌变组织系数αβ (待测组织阻抗值相对于正常组织阻抗值的实部变化百分比记为α, 虚部相对变化百分比记为β)进行肿瘤组织识别. 结果表明, 当α ≤ 36.5%, β ≤ 31.2%时, 组织是正常组织; 当α ≥ 36.5%, β ≥ 31.2%时, 组织可能混有肿瘤组织; 当α ≥ 82.7%, β ≥ 73.6%时, 组织是肿瘤组织.
    A fast and convenient method of recognizing the tongue tumor tissue based on bioelectrical impedance spectroscopy (BIS) is proposed. According to the difference among the electrical characteristics of tongue tissue under different pathological and physiological conditions, we can judge whether it is pathological. This method can help the surgeon in the clinical resection of tongue cancer not only to remove the tumor completely, but also to retain the patient’s tongue function as much as possible. In this paper, a model of human tongue squamous cell carcinoma (HSC3) xenografted in situ is established in mice. The electrical properties of the normal tissue, mixed tumor tissue and tumor tissue are studied by the BIS technology. The amplitude spectrum shows that none of the three tissues can be distinguished well in a low frequency range of 100–8.09 × 105 Hz due to the influence of contact impedance, but they can be distinguished according to their electrical characteristics in a high frequency range of 8.09 × 105–5 × 106 Hz. In the process of the experiment, first of all, the tip, middle and root of the normal tongue are detected, and the results show that the impedance values of these three parts are similar in the high frequency band, so the influence of different positions of tongue on the impedance value can be excluded. Then, the same three regions of the cancerous tongue are detected, and three electrical parameters, namely relaxation frequency frelax, real part spectrum ${{{Z}}'_{\rm{relax}}}$ and imaginary part spectrum ${{{Z}}''_{\rm{relax}}}$ of electrical impedance are extracted from the amplitude spectrum of high frequency band. The quantitative analyses of these three kinds of tissues show that the ${{{Z}}'_{\rm{relax}}}$ and ${{{Z}}''_{\rm{relax}}}$ of tumor tissue are the highest, and those of normal tissue are the lowest. Finally, the cancerous tissue coefficients α and β (the relative change percentage of the real part and imaginary part of the impedance value between the tested tissue and normal tissue) are determined according to these three electrical parameters for tumor tissue identification. The results show that when α ≤ 36.5% and β ≤ 31.2%, the tissue is normal; when α ≥ 36.5% and β ≥ 31.2%, the tissue may be mixed with tumor tissue; when α ≥ 82.7% and β ≥ 73.6%, the tissue is tumor tissue.
      通信作者: 刘凯, liukai@nuaa.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 62071224)和国家自然科学基金委员会与英国皇家学会合作交流项目(批准号: IEC\NSFC\181213)资助的课题.
      Corresponding author: Liu Kai, liukai@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071224) and the Royal Society-International Exchanges 2018 Cost Share (China) (Grant No. IEC\NSFC\181213)
    [1]

    Koyama S, Tabuchi T, Okawa S, Morishima T, Ishimoto S, Ishibashi M, Miyashiro I 2020 Oral Oncol. 105 104653Google Scholar

    [2]

    贾琼, 顾晓明 2011 辽宁医学院学报 32 280Google Scholar

    Jia Q, Gu X M 2011 J. Liaoning Med. Coll. 32 280Google Scholar

    [3]

    Samołyk-Kogaczewska N, Sierko E, Zuzda K, et al. 2019 Strahlenther. Onkol. 195 780Google Scholar

    [4]

    Shibuya Y, Tanimoto H, Umeda M, Yokoo S, Komori T 2004 Kobe J. Med. Sci. 50 1

    [5]

    Noorlag R, Nulent T J W K, Delwel V E J, Pameijer F A, Es R J J V 2020 Oral Oncol. 110 104895Google Scholar

    [6]

    Yesuratnam A, Wiesenfeld D, Tsui A, Iseli T A, Hoorn S V, Ang M T, Guiney A, Phal P M 2014 Int. J. Oral Surg. 43 787Google Scholar

    [7]

    Mao M H, Wang S, Feng Z E, Li J Z, Li H, Qin L Z, Han Z X 2019 Oral Oncol. 91 79Google Scholar

    [8]

    Murakami R, Shiraishi S, Yoshida R, Sakata J, Yamana K, Hirosue A, Uchiyama Y, Nakayama H, Yamashita Y 2019 Acad. Radiol. 26 e180Google Scholar

    [9]

    Tarabichi O, Bulbul M G, Kanumuri V V, et al. 2019 Laryngoscope 129 662Google Scholar

    [10]

    Locatello L G, Bruno C, Pietragalla M, et al. 2020 Oral Oncol. 107 104749Google Scholar

    [11]

    Fu J Y, Zhu L, Li J, et al. 2020 Br. J. Oral Maxillofac. Surg. 58 997Google Scholar

    [12]

    Furusawa J, Oridate N, SuZuki F, Homma A, Furuta Y, Fukuda S 2007 Oral Oncol. 44 793

    [13]

    Baba A, Ojiri H, Ogane S, Hashimoto K, Inoue T, Takagiwa M, Goto T K 2021 Oral Radiol. 37 86Google Scholar

    [14]

    Wang L, Hu S, Liu K, Chen B, Wu H, Jia J, Yao J 2020 Rev. Sci. Instrum. 91 124104Google Scholar

    [15]

    姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛 2020 物理学报 69 163301Google Scholar

    Yao J F, Wan J F, Yang L, Liu K, Chen B, Wu H T 2020 Acta Phys. Sin. 69 163301Google Scholar

    [16]

    Mahdavi R, Hosseinpour P, Abbasvandi F, MehrvarZ S, Abdolahad M J 2020 Biosens. Bioelectron. 165 112421Google Scholar

    [17]

    陈玉娟, 王晓东, 吴剑, 付峰, 朱彩蓉, 蒲洋, 向飞, 戴涛 2016 四川大学学报 47 267

    Chen Y J, Wang X D, Wu J, Fu F, Zhu C R, Pu Y, Xiang F, Dai T 2016 J. Sichuan.Univ. 47 267

    [18]

    李翔, 刘锋, 帅建伟 2016 物理学报 65 178704Google Scholar

    Li X, Liu F, Shuai J W 2016 Acta Phys. Sin. 65 178704Google Scholar

    [19]

    Wang Y, Zhang W, Sun P, Cai Y, Xu W, Fan Q, Hu Q, Han W 2019 Theranostics 9 391Google Scholar

    [20]

    Liu X, Yao J, Zhao T, Obara H, Cui Y, Takei M 2018 IEEE Trans. Biomed. Circuits Syst. 12 623Google Scholar

  • 图 1  BIS检测仪器 (a) 阻抗分析仪及传感器; (b) 四电极传感器结构图

    Fig. 1.  Measuring equipment of BIS: (a) Impedance analyzer and sensor; (b) structure diagram of four-electrode sensor.

    图 2  舌体的HE染色图

    Fig. 2.  HE staining of tongue.

    图 3  舌体的幅值频谱

    Fig. 3.  Amplitude spectrum of tongue.

    图 4  HSC3癌变舌体的阻抗频谱 (a) 电阻抗实部Z′频谱; (b) 电阻抗虚部Z′′频谱

    Fig. 4.  Impedance spectrum of tongue with HSC3 canceration: (a) Real part spectrum of electrical impedance; (b) imaginary part spectrum of electrical impedance.

    图 5  HSC3癌变舌体组织电学特性对比 (a)弛豫频率 frelax对比; (b)电阻抗实部 $ {Z'_{\rm{relax}}} $对比; (c)电阻抗虚部$ {Z''_{\rm{relax}}} $对比

    Fig. 5.  Comparison of the electrical characteristics of tongue tissue in HSC3 canceration: (a) Comparison of frelax; (b) comparison of $ {Z'_{\rm{relax}}} $; (c) comparison of $ {Z''_{\rm{relax}}} $

    表 1  阻抗测量值的最大相对误差

    Table 1.  Maximum relative error of impedance value.

    组织区域最大相对误差/%
    Mou1Mou2Mou3
    N区域2.654.452.68
    B区域2.541.362.77
    T区域1.241.733.95
    下载: 导出CSV
  • [1]

    Koyama S, Tabuchi T, Okawa S, Morishima T, Ishimoto S, Ishibashi M, Miyashiro I 2020 Oral Oncol. 105 104653Google Scholar

    [2]

    贾琼, 顾晓明 2011 辽宁医学院学报 32 280Google Scholar

    Jia Q, Gu X M 2011 J. Liaoning Med. Coll. 32 280Google Scholar

    [3]

    Samołyk-Kogaczewska N, Sierko E, Zuzda K, et al. 2019 Strahlenther. Onkol. 195 780Google Scholar

    [4]

    Shibuya Y, Tanimoto H, Umeda M, Yokoo S, Komori T 2004 Kobe J. Med. Sci. 50 1

    [5]

    Noorlag R, Nulent T J W K, Delwel V E J, Pameijer F A, Es R J J V 2020 Oral Oncol. 110 104895Google Scholar

    [6]

    Yesuratnam A, Wiesenfeld D, Tsui A, Iseli T A, Hoorn S V, Ang M T, Guiney A, Phal P M 2014 Int. J. Oral Surg. 43 787Google Scholar

    [7]

    Mao M H, Wang S, Feng Z E, Li J Z, Li H, Qin L Z, Han Z X 2019 Oral Oncol. 91 79Google Scholar

    [8]

    Murakami R, Shiraishi S, Yoshida R, Sakata J, Yamana K, Hirosue A, Uchiyama Y, Nakayama H, Yamashita Y 2019 Acad. Radiol. 26 e180Google Scholar

    [9]

    Tarabichi O, Bulbul M G, Kanumuri V V, et al. 2019 Laryngoscope 129 662Google Scholar

    [10]

    Locatello L G, Bruno C, Pietragalla M, et al. 2020 Oral Oncol. 107 104749Google Scholar

    [11]

    Fu J Y, Zhu L, Li J, et al. 2020 Br. J. Oral Maxillofac. Surg. 58 997Google Scholar

    [12]

    Furusawa J, Oridate N, SuZuki F, Homma A, Furuta Y, Fukuda S 2007 Oral Oncol. 44 793

    [13]

    Baba A, Ojiri H, Ogane S, Hashimoto K, Inoue T, Takagiwa M, Goto T K 2021 Oral Radiol. 37 86Google Scholar

    [14]

    Wang L, Hu S, Liu K, Chen B, Wu H, Jia J, Yao J 2020 Rev. Sci. Instrum. 91 124104Google Scholar

    [15]

    姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛 2020 物理学报 69 163301Google Scholar

    Yao J F, Wan J F, Yang L, Liu K, Chen B, Wu H T 2020 Acta Phys. Sin. 69 163301Google Scholar

    [16]

    Mahdavi R, Hosseinpour P, Abbasvandi F, MehrvarZ S, Abdolahad M J 2020 Biosens. Bioelectron. 165 112421Google Scholar

    [17]

    陈玉娟, 王晓东, 吴剑, 付峰, 朱彩蓉, 蒲洋, 向飞, 戴涛 2016 四川大学学报 47 267

    Chen Y J, Wang X D, Wu J, Fu F, Zhu C R, Pu Y, Xiang F, Dai T 2016 J. Sichuan.Univ. 47 267

    [18]

    李翔, 刘锋, 帅建伟 2016 物理学报 65 178704Google Scholar

    Li X, Liu F, Shuai J W 2016 Acta Phys. Sin. 65 178704Google Scholar

    [19]

    Wang Y, Zhang W, Sun P, Cai Y, Xu W, Fan Q, Hu Q, Han W 2019 Theranostics 9 391Google Scholar

    [20]

    Liu X, Yao J, Zhao T, Obara H, Cui Y, Takei M 2018 IEEE Trans. Biomed. Circuits Syst. 12 623Google Scholar

  • [1] 韩宏博, 王伟, 林佳玮, 赵兴宇, 王丽娜. 单羟基醇介电弛豫谱异常变化的测量与分析. 物理学报, 2025, 74(3): 037701. doi: 10.7498/aps.74.20241643
    [2] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [3] 刘圣龙, 杨璐, 朱程君, 刘凯, 韩伟, 姚佳烽. 基于生物阻抗谱的细胞悬浮液浓度识别方法研究. 物理学报, 2022, 71(7): 078701. doi: 10.7498/aps.71.20211837
    [4] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [5] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [6] 姚佳烽, 万建芬, 杨璐, 刘凯, 陈柏, 吴洪涛. 基于生物阻抗谱的细胞电学特性研究. 物理学报, 2020, 69(16): 163301. doi: 10.7498/aps.69.20200601
    [7] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法. 物理学报, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [9] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [10] 赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩. 碲化镉薄膜太阳能电池电学特性参数分析. 物理学报, 2013, 62(18): 188801. doi: 10.7498/aps.62.188801
    [11] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究. 物理学报, 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [12] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响. 物理学报, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [13] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [14] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法. 物理学报, 2008, 57(7): 4282-4291. doi: 10.7498/aps.57.4282
    [15] 刘晓东, 王玮竹, 高瑞鑫, 赵建华, 文锦辉, 林位株, 赖天树. 室温下(Ga,Mn)As中载流子的自旋弛豫特性. 物理学报, 2008, 57(6): 3857-3861. doi: 10.7498/aps.57.3857
    [16] 邱东江, 王 俊, 丁扣宝, 施红军, 郏 寅. 退火对Mn和N共掺杂的Zn0.88Mn0.12O:N薄膜特性的影响. 物理学报, 2008, 57(8): 5249-5255. doi: 10.7498/aps.57.5249
    [17] 苑进社, 陈光德. 蓝宝石邻晶面衬底MBE生长GaN薄膜的瞬态光电导弛豫特性研究. 物理学报, 2007, 56(7): 4218-4223. doi: 10.7498/aps.56.4218
    [18] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响. 物理学报, 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [19] 辛宏梁, 袁望治, 程金科, 林 宏, 阮建中, 赵振杰. NiFeCoP/BeCu复合结构丝的巨磁阻抗效应和磁化频率特性. 物理学报, 2007, 56(7): 4152-4157. doi: 10.7498/aps.56.4152
    [20] 曹万强, 李景德. 聚合物介电弛豫的温度特性. 物理学报, 2002, 51(7): 1634-1638. doi: 10.7498/aps.51.1634
计量
  • 文章访问数:  5889
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-08
  • 修回日期:  2021-03-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回