Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of coupling theory of metal surface plasmon

Zhu Xu-Peng Zhang Shi Shi Hui-Min Chen Zhi-Quan Quan Jun Xue Shu-Wen Zhang Jun Duan Hui-Gao

Citation:

Research progress of coupling theory of metal surface plasmon

Zhu Xu-Peng, Zhang Shi, Shi Hui-Min, Chen Zhi-Quan, Quan Jun, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao
PDF
HTML
Get Citation
  • Metal surface plasmon is a collective oscillation effect of free electrons at the micro-nanostructure surface under the stimulation of incident light. Since the corresponding oscillating electric field is strongly bound below the sub-wavelength scale, it can be used as an information carrier for future micro-nano photonic circuit and device, and can also be used to enhance the interaction between light and matter on a micro-nano scale, such as surface enhanced photoluminescence, Raman scattering, nonlinear signal generation, surface enhanced catalysis, photothermal conversion, photovoltaic conversion, etc. How to theoretically understand the unique optical behavior dominated by the plasmon oscillation mode is one of the hot research spots in the field of surface plasmon photonics. In recent years, the theory of surface plasmon has been continuously improved with the support of a large number of experimental researches. In this paper, we first systematically summarize the optical behaviors and properties of metal under the excitation of incident electromagnetic waves, and then briefly describe the plasmonic modes existing in the metal and their corresponding physical natures, the oscillation dynamics process and the currently prevailing surface plasmon coupling theories. We hope that this paper can provide a theoretical basis for those researchers who have just dabbled in the field of surface plasmons and help them to master the relevant basic knowledge quickly.
      Corresponding author: Zhu Xu-Peng, zhuxp18@lingnan.edu.cn ; Zhang Jun, zhangjun@lingnan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574078, 61674073), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ1008, 2015RS4024), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2017A050506056), the Key Basic and Applied Research Project of Guangdong Province, China (Grant No. 2016KZDXM021), the College Physics Teaching Team (Grant No. 114961700249), and the Scientific Research Project of Lingnan Normal University, China (Grant No. ZL1937)
    [1]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [4]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [5]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [6]

    Søndergaard T, Bozhevolnyi S I, Beermann J, Novikov S M, Devaux E, Ebbesen T W 2010 Nano Lett. 10 291Google Scholar

    [7]

    Gramotnev D K, Bozhevolnyi S I 2013 Nat. Photon. 8 13

    [8]

    Zhu Y, Yuan W, Sun H, Yu Y 2017 Nanomaterials 7 221Google Scholar

    [9]

    李盼 2019 物理学报 68 146201Google Scholar

    Li P 2019 Acta Phys. Sin. 68 146201Google Scholar

    [10]

    Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105Google Scholar

    [11]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [12]

    Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H 2018 ACS Appl. Mater. Inter. 10 35607Google Scholar

    [13]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [14]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators, B 54 3Google Scholar

    [15]

    Liedberg B, Nylander C, Lunström I 1983 Sens. Actuators 4 299Google Scholar

    [16]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [17]

    Thomann I, Pinaud B A, Chen Z, Clemens B M, Jaramillo T F, Brongersma M L 2011 Nano Lett. 11 3440Google Scholar

    [18]

    Morfa A J, Rowlen K L, III T H R, Romero M J, van de Lagemaat J 2008 Appl. Phys. Lett. 92 013504Google Scholar

    [19]

    Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X 2015 ACS Nano 9 9199Google Scholar

    [20]

    Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M 2014 Sensors 14 4948Google Scholar

    [21]

    Drude P 1900 Ann. Phys. 306 566Google Scholar

    [22]

    Mie G 1908 Ann. Phys. 330 377Google Scholar

    [23]

    Fano U 1941 J. Opt. Soc. Am. 31 213Google Scholar

    [24]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [25]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [26]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [27]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1

    [28]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101

    [29]

    方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第1−21页

    Fang R C 2001 Solid Spectroscopy (Hefei: University of Science and Technology of China Press) pp1−21 (in Chinese)

    [30]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416Google Scholar

    [31]

    Hu H 2013 Ph. D. Dissertation (Singapore: Nanyang Thechnological University)

    [32]

    Kleinman S L, Ringe E, Valley N, Wustholz K L, Phillips E, Scheidt K A, Schatz G C, van Duyne R P 2011 J. Am. Chem. Soc. 133 4115Google Scholar

    [33]

    Kumar K, Duan H, Hegde R S, Koh S C W, Wei J N, Yang J K W 2012 Nat. Nanotechnol. 7 557Google Scholar

    [34]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435Google Scholar

    [35]

    Willets K A, Duyne R P V 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [36]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer) pp4−39

    [37]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [38]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [39]

    Otto A 1968 Z. Physik 216 398Google Scholar

    [40]

    Maier S A, Barclay P E, Johnson T J, Friedman M D, Painter O 2004 Appl. Phys. Lett. 84 3990Google Scholar

    [41]

    Zhou W, Gao H, Odom T W 2010 ACS Nano 4 1241Google Scholar

    [42]

    Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 80 404Google Scholar

    [43]

    Bouhelier A, Wiederrecht G P 2005 Opt. Lett. 30 884Google Scholar

    [44]

    Kim C S, Vurgaftman I, Flynn R A, Kim M, Lindle J R, Bewley W W, Bussmann K, Meyer J R, Long J P 2010 Opt. Express 18 10609Google Scholar

    [45]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889Google Scholar

    [46]

    Homola J 2008 Chem. Rev. 108 462Google Scholar

    [47]

    Murray W A, Barnes W L 2007 Adv. Mater. 19 3771Google Scholar

    [48]

    Hartland G V 2011 Chem. Rev. 111 3858Google Scholar

    [49]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410Google Scholar

    [50]

    Hulst H C, Hulst H C V D 1957 Light Scattering by Small Particles (New York: Dover Publications, Inc.) pp114−128

    [51]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428

    [52]

    Meier M, Wokaun A 1983 Opt. Lett. 8 581Google Scholar

    [53]

    Wokaun A, Gordon J P, Liao P F 1982 Phys. Rev. Lett. 48 957Google Scholar

    [54]

    Kreibig U 1976 Appl. Phys. 10 255Google Scholar

    [55]

    Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193

    [56]

    Coronado E A, Schatz G C 2003 J. Chem. Phys. 119 3926Google Scholar

    [57]

    Gans R 1912 Ann. Phys. 342 881Google Scholar

    [58]

    秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元 2019 物理学报 68 147401Google Scholar

    Qin K, Yuan L R, Tan J, Peng S, Wang Q J, Zhang X J, Lu Y Q, Zhu Y Y 2019 Acta Phys. Sin. 68 147401Google Scholar

    [59]

    Bozhevolnyi S I, Erland J, Leosson K, Skovgaard P M W, Hvam J M 2001 Phys. Rev. Lett. 86 3008Google Scholar

    [60]

    Weeber J C, Dereux A, Girard C, Krenn J R, Goudonnet J P 1999 Phys. Rev. B 60 9061Google Scholar

    [61]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [62]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [63]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [64]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [65]

    Ng B, Wu J, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M, Maier S A 2013 Adv. Optical Mater. 1 543Google Scholar

    [66]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Optical Mater. 5 1600960Google Scholar

    [67]

    Rusina A, Durach M, Stockman M I 2010 Appl. Phys. A 100 375Google Scholar

    [68]

    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402Google Scholar

    [69]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806Google Scholar

    [70]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095Google Scholar

    [71]

    Heilweil E J, Hochstrasser R M 1985 J. Chem. Phys. 82 4762Google Scholar

    [72]

    Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670Google Scholar

    [73]

    Noguez C 2007 J. Phys. Chem. C 111 3806Google Scholar

    [74]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [75]

    Hentschel M, Utikal T, Giessen H, Lippitz M 2012 Nano Lett. 12 3778Google Scholar

    [76]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752Google Scholar

    [77]

    Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628Google Scholar

    [78]

    Vogel N, Fischer J, Mohammadi R, Retsch M, Butt H J, Landfester K, Weiss C K, Kreiter M 2011 Nano Lett. 11 446Google Scholar

    [79]

    Simoncelli S, Li Y, Cortés E, Maier S A 2018 Nano Lett. 18 3400Google Scholar

    [80]

    Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [81]

    Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X, Fang Z 2019 Nano Lett. 19 775Google Scholar

    [82]

    Han T, Zu S, Li Z, Jiang M, Zhu X, Fang Z 2018 Nano Lett. 18 567Google Scholar

    [83]

    Liu Z, Jiang M, Hu Y, Lin F, Shen B, Zhu X, Fang Z 2018 Opto-Electron. Adv. 1 180007

    [84]

    Zu S, Han T, Jiang M, Lin F, Zhu X, Fang Z 2018 ACS Nano 12 3908Google Scholar

    [85]

    Liu H, Li T, Wang S, Zhu S 2010 Front. Phys. China 5 277Google Scholar

    [86]

    Jain P K, Huang W, El-Sayed M A 2007 Nano Lett. 7 2080Google Scholar

    [87]

    Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854Google Scholar

    [88]

    Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954Google Scholar

    [89]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [90]

    Zhu X, Chen Y, Shi H, Zhang S, Liu Q, Duan H 2017 J. Appl. Phys. 121 213105Google Scholar

    [91]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [92]

    Faist J, Capasso F, Sirtori C, West K W, Pfeiffer L N 1997 Nature 390 589Google Scholar

    [93]

    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663Google Scholar

    [94]

    Alzar C L G, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37Google Scholar

    [95]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680Google Scholar

    [96]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [97]

    Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412Google Scholar

    [98]

    Zhu X, Yang Z, Chen Y, Duan H 2015 Plasmonics 10 1013Google Scholar

    [99]

    Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K 2015 Nanoscale 7 12682Google Scholar

    [100]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543Google Scholar

  • 图 1  (a)传播表面等离激元示意图; (b)局域表面等离激元示意图[35]

    Figure 1.  (a) Propagating plasmon (surface plasmon polaritons); (b) localized surface plasmon[35].

    图 2  支持SPP传输的金属-介质界面示意图

    Figure 2.  Metal-medium interface that supports SPP transmission.

    图 3  (a)金属全频色散关系; (b)金属和电介质的介电常数与入射频率之间的关系(借鉴中国科学院大学董国艳老师《纳米光学》第十讲图)

    Figure 3.  (a) Full frequency dispersion relation of metal materials; (b) relationship between incident frequency and dielectric constant of metal and dielectric, respectively (from the tenth lecture of 《Nano Optics》, Dong Guoyan, Chinese Academy of Sciences)

    图 4  静电场中的金属微纳米球

    Figure 4.  Metal micro-nanospheres in an electrostatic field.

    图 5  (a)衰减通道示意图; (b)衰减动力学过程

    Figure 5.  (a) Attenuation channels; (b) attenuation dynamics.

    图 6  (a)谐振子间耦合示意图[73]; (b)谐振子与其镜像耦合示意图[73]; (c)耦合的简谐振子[74]; (d)三次谐波产生对应的等离激元非线性谐振模型[75]

    Figure 6.  (a) Inter-coupling of harmonic oscillators[73]; (b) harmonic oscillator coupled with its mirror image[73]; (c) two coupled harmonic oscillators[74]; (d) a nonlinear harmonic oscillators model of the plasmon third harmonic generation[75].

    图 7  (a)表面等离激元共振模式杂化过程图; (b)堆叠式金属带的透射光谱及表面等离激元杂化示意图[77]; (c)单一劈裂盘阵列的透射光谱及其对应的共振模式杂化图[10]; (d)双层月牙形结构的模式杂化[78]; (e)杂化模式成像[79]

    Figure 7.  (a) Hybridization process between two surface plasmon resonance modes; (b) the transmission spectrum of stacked cut-wire metamaterials and its corresponding plasmon hybridization process; (c) the transmission spectra and plasmon hybridization process of single split-disk; (d) the plasmon hybridization of stacked double crescents arrays; (e) the super-resolution imaging of hybrid plasmon mode.

    图 8  (a) Simpson-Peterson模型物理量分布图; (b)不同角度的耦合及对应的消光光谱[72]; (c)不同排布金纳米棒的耦合及潜在应用[89]; (d)不同偶极中心偏移量下耦合能量随角度的变化曲线[90]

    Figure 8.  (a) Relationship of physical quantity in Simpson-Peterson model; (b) the coupling at different angles and their corresponding extinction spectra[72]; (c) the coupling and potential applications of different arrangements in gold nanorods system[89]; (d) coupling energy versus angle for different dipole center offsets[90].

    图 9  (a)表面等离激元共振诱导Fano共振的过程示意图; (b)固体金属球的米氏散射[96]; (c)不同结构配置的透射系数谱及标定位置对应的电场分布[99]; (d) Fano参数与相移关系及对应的Fano响应函数[100]

    Figure 9.  (a) Process of surface plasmon resonance inducing Fano resonance; (b) Mie scattering against a solid metallic sphere[96]; (c) the transmission coefficient spectra of different structural configurations and the electric field distribution corresponding to the calibration position[99]; (d) Fano parameter versus phase shift and the Fano response function[100].

  • [1]

    Fang Z, Zhu X 2013 Adv. Mater. 25 3840Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [4]

    Lu D, Liu Z 2012 Nat. Commun. 3 1205Google Scholar

    [5]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [6]

    Søndergaard T, Bozhevolnyi S I, Beermann J, Novikov S M, Devaux E, Ebbesen T W 2010 Nano Lett. 10 291Google Scholar

    [7]

    Gramotnev D K, Bozhevolnyi S I 2013 Nat. Photon. 8 13

    [8]

    Zhu Y, Yuan W, Sun H, Yu Y 2017 Nanomaterials 7 221Google Scholar

    [9]

    李盼 2019 物理学报 68 146201Google Scholar

    Li P 2019 Acta Phys. Sin. 68 146201Google Scholar

    [10]

    Zhang S, Li G C, Chen Y, Zhu X, Liu S D, Lei D Y, Duan H 2016 ACS Nano 10 11105Google Scholar

    [11]

    Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q 2010 Nature 464 392Google Scholar

    [12]

    Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H 2018 ACS Appl. Mater. Inter. 10 35607Google Scholar

    [13]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342Google Scholar

    [14]

    Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators, B 54 3Google Scholar

    [15]

    Liedberg B, Nylander C, Lunström I 1983 Sens. Actuators 4 299Google Scholar

    [16]

    Linic S, Christopher P, Ingram D B 2011 Nat. Mater. 10 911Google Scholar

    [17]

    Thomann I, Pinaud B A, Chen Z, Clemens B M, Jaramillo T F, Brongersma M L 2011 Nano Lett. 11 3440Google Scholar

    [18]

    Morfa A J, Rowlen K L, III T H R, Romero M J, van de Lagemaat J 2008 Appl. Phys. Lett. 92 013504Google Scholar

    [19]

    Song J, Yang X, Jacobson O, Lin L, Huang P, Niu G, Ma Q, Chen X 2015 ACS Nano 9 9199Google Scholar

    [20]

    Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, Sakamoto K, Hide M 2014 Sensors 14 4948Google Scholar

    [21]

    Drude P 1900 Ann. Phys. 306 566Google Scholar

    [22]

    Mie G 1908 Ann. Phys. 330 377Google Scholar

    [23]

    Fano U 1941 J. Opt. Soc. Am. 31 213Google Scholar

    [24]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [25]

    Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419Google Scholar

    [26]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [27]

    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M 2007 Rep. Prog. Phys. 70 1

    [28]

    Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer Science & Business Media) pp5−101

    [29]

    方容川 2001 固体光谱学(合肥: 中国科学技术大学出版社) 第1−21页

    Fang R C 2001 Solid Spectroscopy (Hefei: University of Science and Technology of China Press) pp1−21 (in Chinese)

    [30]

    Vial A, Grimault A S, Macías D, Barchiesi D, de la Chapelle M L 2005 Phys. Rev. B 71 085416Google Scholar

    [31]

    Hu H 2013 Ph. D. Dissertation (Singapore: Nanyang Thechnological University)

    [32]

    Kleinman S L, Ringe E, Valley N, Wustholz K L, Phillips E, Scheidt K A, Schatz G C, van Duyne R P 2011 J. Am. Chem. Soc. 133 4115Google Scholar

    [33]

    Kumar K, Duan H, Hegde R S, Koh S C W, Wei J N, Yang J K W 2012 Nat. Nanotechnol. 7 557Google Scholar

    [34]

    Zhang X, Liu Z 2008 Nat. Mater. 7 435Google Scholar

    [35]

    Willets K A, Duyne R P V 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [36]

    Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin, Heidelberg: Springer) pp4−39

    [37]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [38]

    张文君, 高龙, 魏红, 徐红星 2019 物理学报 68 147302Google Scholar

    Zhang W J, Gao L, Wei H, Xu H X 2019 Acta Phys. Sin. 68 147302Google Scholar

    [39]

    Otto A 1968 Z. Physik 216 398Google Scholar

    [40]

    Maier S A, Barclay P E, Johnson T J, Friedman M D, Painter O 2004 Appl. Phys. Lett. 84 3990Google Scholar

    [41]

    Zhou W, Gao H, Odom T W 2010 ACS Nano 4 1241Google Scholar

    [42]

    Ditlbacher H, Krenn J R, Felidj N, Lamprecht B, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 80 404Google Scholar

    [43]

    Bouhelier A, Wiederrecht G P 2005 Opt. Lett. 30 884Google Scholar

    [44]

    Kim C S, Vurgaftman I, Flynn R A, Kim M, Lindle J R, Bewley W W, Bussmann K, Meyer J R, Long J P 2010 Opt. Express 18 10609Google Scholar

    [45]

    Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl D W 1996 Phys. Rev. Lett. 77 1889Google Scholar

    [46]

    Homola J 2008 Chem. Rev. 108 462Google Scholar

    [47]

    Murray W A, Barnes W L 2007 Adv. Mater. 19 3771Google Scholar

    [48]

    Hartland G V 2011 Chem. Rev. 111 3858Google Scholar

    [49]

    Link S, El-Sayed M A 1999 J. Phys. Chem. B 103 8410Google Scholar

    [50]

    Hulst H C, Hulst H C V D 1957 Light Scattering by Small Particles (New York: Dover Publications, Inc.) pp114−128

    [51]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (New York: John Wiley & Sons) pp287−428

    [52]

    Meier M, Wokaun A 1983 Opt. Lett. 8 581Google Scholar

    [53]

    Wokaun A, Gordon J P, Liao P F 1982 Phys. Rev. Lett. 48 957Google Scholar

    [54]

    Kreibig U 1976 Appl. Phys. 10 255Google Scholar

    [55]

    Kreibig U, Vollmer M 2013 Optical Properties of Metal Clusters (New York: Springer Science & Business Media) pp14−193

    [56]

    Coronado E A, Schatz G C 2003 J. Chem. Phys. 119 3926Google Scholar

    [57]

    Gans R 1912 Ann. Phys. 342 881Google Scholar

    [58]

    秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元 2019 物理学报 68 147401Google Scholar

    Qin K, Yuan L R, Tan J, Peng S, Wang Q J, Zhang X J, Lu Y Q, Zhu Y Y 2019 Acta Phys. Sin. 68 147401Google Scholar

    [59]

    Bozhevolnyi S I, Erland J, Leosson K, Skovgaard P M W, Hvam J M 2001 Phys. Rev. Lett. 86 3008Google Scholar

    [60]

    Weeber J C, Dereux A, Girard C, Krenn J R, Goudonnet J P 1999 Phys. Rev. B 60 9061Google Scholar

    [61]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [62]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X P, Shi H M, Zhang S, Chen Z Q, Zheng M J, Wang Y S, Xue S W, Zhang J, Duan H G 2019 Acta Phys. Sin. 68 147304Google Scholar

    [63]

    Halas N J, Lal S, Chang W S, Link S, Nordlander P 2011 Chem. Rev. 111 3913Google Scholar

    [64]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [65]

    Ng B, Wu J, Hanham S M, Fernández-Domínguez A I, Klein N, Liew Y F, Breese M B H, Hong M, Maier S A 2013 Adv. Optical Mater. 1 543Google Scholar

    [66]

    Chen L, Xu N, Singh L, Cui T, Singh R, Zhu Y, Zhang W 2017 Adv. Optical Mater. 5 1600960Google Scholar

    [67]

    Rusina A, Durach M, Stockman M I 2010 Appl. Phys. A 100 375Google Scholar

    [68]

    Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P 2002 Phys. Rev. Lett. 88 077402Google Scholar

    [69]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806Google Scholar

    [70]

    Zhang W, Fang Z, Zhu X 2017 Chem. Rev. 117 5095Google Scholar

    [71]

    Heilweil E J, Hochstrasser R M 1985 J. Chem. Phys. 82 4762Google Scholar

    [72]

    Tabor C, van Haute D, El-Sayed M A 2009 ACS Nano 3 3670Google Scholar

    [73]

    Noguez C 2007 J. Phys. Chem. C 111 3806Google Scholar

    [74]

    Törmä P, Barnes W L 2015 Rep. Prog. Phys. 78 013901

    [75]

    Hentschel M, Utikal T, Giessen H, Lippitz M 2012 Nano Lett. 12 3778Google Scholar

    [76]

    Packard B Z, Toptygin D D, Komoriya A, Brand L 1998 J. Phys. Chem. B 102 752Google Scholar

    [77]

    Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H 2007 Adv. Mater. 19 3628Google Scholar

    [78]

    Vogel N, Fischer J, Mohammadi R, Retsch M, Butt H J, Landfester K, Weiss C K, Kreiter M 2011 Nano Lett. 11 446Google Scholar

    [79]

    Simoncelli S, Li Y, Cortés E, Maier S A 2018 Nano Lett. 18 3400Google Scholar

    [80]

    Duan H, Fernández-Domínguez A I, Bosman M, Maier S A, Yang J K W 2012 Nano Lett. 12 1683Google Scholar

    [81]

    Zu S, Han T, Jiang M, Liu Z, Jiang Q, Lin F, Zhu X, Fang Z 2019 Nano Lett. 19 775Google Scholar

    [82]

    Han T, Zu S, Li Z, Jiang M, Zhu X, Fang Z 2018 Nano Lett. 18 567Google Scholar

    [83]

    Liu Z, Jiang M, Hu Y, Lin F, Shen B, Zhu X, Fang Z 2018 Opto-Electron. Adv. 1 180007

    [84]

    Zu S, Han T, Jiang M, Lin F, Zhu X, Fang Z 2018 ACS Nano 12 3908Google Scholar

    [85]

    Liu H, Li T, Wang S, Zhu S 2010 Front. Phys. China 5 277Google Scholar

    [86]

    Jain P K, Huang W, El-Sayed M A 2007 Nano Lett. 7 2080Google Scholar

    [87]

    Jain P K, El-Sayed M A 2007 Nano Lett. 7 2854Google Scholar

    [88]

    Jain P K, El-Sayed M A 2008 J. Phys. Chem. C 112 4954Google Scholar

    [89]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [90]

    Zhu X, Chen Y, Shi H, Zhang S, Liu Q, Duan H 2017 J. Appl. Phys. 121 213105Google Scholar

    [91]

    Fano U 1961 Phys. Rev. 124 1866Google Scholar

    [92]

    Faist J, Capasso F, Sirtori C, West K W, Pfeiffer L N 1997 Nature 390 589Google Scholar

    [93]

    Verellen N, Sonnefraud Y, Sobhani H, Hao F, Moshchalkov V V, Dorpe P V, Nordlander P, Maier S A 2009 Nano Lett. 9 1663Google Scholar

    [94]

    Alzar C L G, Martinez M A G, Nussenzveig P 2002 Am. J. Phys. 70 37Google Scholar

    [95]

    Fan J A, Bao K, Wu C, Bao J, Bardhan R, Halas N J, Manoharan V N, Shvets G, Nordlander P, Capasso F 2010 Nano Lett. 10 4680Google Scholar

    [96]

    Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T 2010 Nat. Mater. 9 707Google Scholar

    [97]

    Dong Z G, Liu H, Xu M X, Li T, Wang S M, Cao J X, Zhu S N, Zhang X 2010 Opt. Express 18 22412Google Scholar

    [98]

    Zhu X, Yang Z, Chen Y, Duan H 2015 Plasmonics 10 1013Google Scholar

    [99]

    Zhang Y, Li T, Zeng B, Zhang H, Lv H, Huang X, Zhang W, Azad A K 2015 Nanoscale 7 12682Google Scholar

    [100]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photonics 11 543Google Scholar

  • [1] Xu Long, Wang Yao. Simulation of dynamic process of double bubble coupled acoustic cavitation. Acta Physica Sinica, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [2] Zhang Cai-Xia, Ma Xiang-Chao, Zhang Jian-Qi. Theoretical study on surface plasmon and hot carrier transport properties of Au(111) films. Acta Physica Sinica, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [3] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [4] Hu Bao-Jing, Huang Ming, Li Peng, Yang Jing-Jing. Multiband plasmon-induced transparency based on nanometals-graphene hybrid model. Acta Physica Sinica, 2020, 69(17): 174201. doi: 10.7498/aps.69.20200200
    [5] Chen Yun-Tian, Wang Jing-Wei, Chen Wei-Jin, Xu Jing. Reciprocal waveguide coupled mode theory. Acta Physica Sinica, 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [6] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, 2019, 68(5): 050301. doi: 10.7498/aps.68.20181774
    [7] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [8] Shi Jun-Kai, Chai Lu, Zhao Xiao-Wei, Li Jiang, Liu Bo-Wen, Hu Ming-Lie, Li Yan-Feng, Wang Qing-Yue. Coupling dynamics for a photonic crystal fiber femtosecond laser nonlinear amplification system. Acta Physica Sinica, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [9] Zhang Zhen-Qing, Lu Hai, Wang Shao-Hua, Wei Ze-Yong, Jiang Hai-Tao, Li Yun-Hui. Optical Tamm state and related lasing effect enhanced by planar plasmonic metamaterials. Acta Physica Sinica, 2015, 64(11): 114202. doi: 10.7498/aps.64.114202
    [10] Yang Xiao-Xia, Kong Xiang-Tian, Dai Qing. Optical properties of graphene plasmons and their potential applications. Acta Physica Sinica, 2015, 64(10): 106801. doi: 10.7498/aps.64.106801
    [11] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [12] Guo Fu-Ming, Song Yang, Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun. The dynamic process of two-electron atom irradiated by intense laser pulse using time dependent quantum Monte Carlo method. Acta Physica Sinica, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [13] Chen Ying, Chen Xiao-Bo, Zhang Hui-Min, Xu Xiao-Ling, Wang Ce. Influence of improved anti-Stokes energy transfer between rare earth ions in ErP5O14 noncrystal on dynamic study. Acta Physica Sinica, 2011, 60(7): 077802. doi: 10.7498/aps.60.077802
    [14] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for long-period fiber gratings. Acta Physica Sinica, 2010, 59(12): 8607-8614. doi: 10.7498/aps.59.8607
    [15] Hu Xiao-Ying, Zhou Ya-Jun. Optical model potential effect in (e,2e) collisions of argon. Acta Physica Sinica, 2010, 59(4): 2423-2427. doi: 10.7498/aps.59.2423
    [16] Rao Yun-Jiang, Zeng Xiang-Kai. Theory of Fourier mode coupling for fiber Bragg gratings. Acta Physica Sinica, 2010, 59(12): 8597-8606. doi: 10.7498/aps.59.8597
    [17] Zhang Quan-Yi, Peng Zheng, He Run, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The drag force experienced by a projectile in granular medium under gravity. Acta Physica Sinica, 2007, 56(8): 4708-4712. doi: 10.7498/aps.56.4708
    [18] Investigation on power transfer in dielectric barrier discharge. Acta Physica Sinica, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [19] Zhang Quan-Yi, Wu Yao-Yu, Peng Zheng, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The sinking depth of a projectile in granular media under gravity. Acta Physica Sinica, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
    [20] REN YAN-RU, YIN DAO-LE. CONDITION FOR THE FORMATION OF ACOUSTIC PLASMONS IN METALS. Acta Physica Sinica, 1981, 30(4): 545-548. doi: 10.7498/aps.30.545
Metrics
  • Abstract views:  29406
  • PDF Downloads:  1514
  • Cited By: 0
Publishing process
  • Received Date:  10 September 2019
  • Accepted Date:  08 October 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回