-
Graphene plasmons have aroused a great deal of research interest in recent years due to their unique features such as electrical tunability, ultra-strong field confinement and relatively low intrinsic damping. In this review paper, we summarize the fundamental optical properties of localized and propagating plasmons supported by graphene, and the experimental techniques for excitation and detection of them, with focusing on their dispersion relations and plasmon-phonon coupling mechanism. In general, the dispersion of graphene plasmons is affected by the Fermi level of graphene and the dielectric environment. The graphene plasmons can exist in a broad spectrum range from mid-infrared to terahertz. This has been experimentally verified for both the localized and propagation plasmons in graphene. On the one hand, the excitation frequency and confinement of localized plasmons supported by graphene micro/nano-structures are constrained by the structural geometry. Additionally, influenced from the tunability of the optical conductivity of graphene, the excitation frequency of graphene plasmons can be tuned by electrostatic or chemical doping. On the other hand, propagating plasmons have been launched and detected by using scattering-type scanning near-field optical microscopy. This technique provides the real-space imaging of the electromagnetic fields of plasmons, thereby directly confirming the existence of the graphene plasmons and verifying their properties predicted theoretically. In a similar regime, the launching and controlling of the propagating plasmons have also been demonstrated by using resonant metal antennas. Compared to metal plasmons, graphene plasmons are much more easily affected by the surroundings due to their scattering from impurity charges and coupling with substrate phonons. In particular, graphene plasmons can hybridize strongly with substrate phonons and there are a series of effects on plasmon properties such as resonance frequency, intensity and plasmon lifetime. The designing of the dielectric surrounding can effectively manipulate the graphene plasmons. Finally, we review the emerging applications of graphene plasmon in the mid-infrared and terahertz, such as electro-optical modulators and enhanced mid-infrared spectroscopy.
[1] Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149
[2] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)
[3] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]
[4] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3
[5] Ozbay E 2006 Science 311 189
[6] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[7] Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689
[8] Low T, Avouris P 2014 ACS Nano 2 1086
[9] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[10] Maier S A 2012 Nat. Phys. 8 581
[11] de Abajo F J G 2014 ACS Photon. 1 135
[12] Stauber T 2014 J. Phys.: Condens. Matter 26 123201
[13] Bao Q L, Loh K P 2012 ACS Nano 6 3677
[14] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
[15] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169
[16] Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77
[17] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
[18] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206
[19] Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222
[20] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418
[21] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435
[22] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541
[23] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82
[24] Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821
[25] Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787
[26] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159
[27] Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369
[28] Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422
[29] Liu Y, Willis R F 2010 Phys. Rev. B 81 081406
[30] Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413
[31] Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406
[32] Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409
[33] Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515
[34] Fano U 1961 Phys. Rev. 124 1866
[35] Harris S E 1997 Phys. Today 50 36
[36] Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431
[37] Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394
[38] Vakil A, Engheta N 2011 Science 332 1291
[39] Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507
[40] Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1
[41] Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698
[42] Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401
[43] Chen P Y, Alù A 2011 ACS Nano 5 5855
[44] Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592
[45] Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628
[46] Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111
[47] Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629
[48] Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405
[49] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299
[50] Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388
[51] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330
[52] Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227
[53] Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581
[54] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573
[55] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876
[56] Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439
-
[1] Prasad P N 2004 Nanophotonics (Hoboken: John Wiley & Sons, Inc.) pp2-7, 129-149
[2] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer-Verlag)
[3] Tong L M, Xu H X 2012 Physics 41 582 (in Chinese) [童廉明, 徐红星 2012 物理 41 582]
[4] Homola J, Yee S S, Gauglitz G 1999 Sens. Actuators B Chem. 54 3
[5] Ozbay E 2006 Science 311 189
[6] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
[7] Jablan M, Soljacic M, Buljan H 2013 Proc. IEEE 101 1689
[8] Low T, Avouris P 2014 ACS Nano 2 1086
[9] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photon. 6 749
[10] Maier S A 2012 Nat. Phys. 8 581
[11] de Abajo F J G 2014 ACS Photon. 1 135
[12] Stauber T 2014 J. Phys.: Condens. Matter 26 123201
[13] Bao Q L, Loh K P 2012 ACS Nano 6 3677
[14] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R, Wang F 2011 Nat. Nanotechnol. 6 630
[15] Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2014 Nat. Mater. DOI:10.1038/nmat4169
[16] Chen J N, Badioli M, Alonso-Gonzalez P, Thongrattanasiri S, Huth F, Osmond J, Spasenovic M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H L 2012 Nature 487 77
[17] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197
[18] Wang F, Zhang Y B, Tian C S, Girit C, Zettl A, Crommie M, Shen Y R 2008 Science 320 206
[19] Gusynin V P, Sharapov S G, Carbotte J P 2007 J. Phys.: Condens. Matter 19 026222
[20] Hwang E H, Das Sarma S 2007 Phys. Rev. B 75 205418
[21] Jablan M, Buljan H, Soljacic M 2009 Phys. Rev. B 80 245435
[22] Brar V W, Jang M S, Sherrott M, Lopez J J, Atwater H A 2013 Nano Lett. 13 2541
[23] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82
[24] Fei Z, Rodin A S, Gannett W, Dai S, Regan W, Wagner M, Liu M K, McLeod A S, Dominguez G, Thiemens M, Castro NetoAntonio H, Keilmann F, Zettl A, Hillenbrand R, Fogler M M, Basov D N 2013 Nat. Nano 8 821
[25] Keilmann F, Hillenbrand R 2004 Philos. Trans. Roy. Soc. A 362 787
[26] Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159
[27] Alonso-González P, Nikitin A Y, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso L E, Hillenbrand R 2014 Science 344 1369
[28] Ong Z Y, Fischetti M V 2012 Phys. Rev. B 86 165422
[29] Liu Y, Willis R F 2010 Phys. Rev. B 81 081406
[30] Koch R J, Seyller T, Schaefer J A 2010 Phys. Rev. B 82 201413
[31] Hwang E H, Sensarma R, Das Sarma S 2010 Phys. Rev. B 82 195406
[32] Jablan M, Soljačć M, Buljan H 2011 Phys. Rev. B 83 161409
[33] Yang X, Kong X T, Bai B, Li Z, Hu H, Qiu X, Dai Q 2014 Small DOI: 101002/smll. 201400515
[34] Fano U 1961 Phys. Rev. 124 1866
[35] Harris S E 1997 Phys. Today 50 36
[36] Christensen J, Manjavacas A, Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 ACS Nano 6 431
[37] Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photon. 7 394
[38] Vakil A, Engheta N 2011 Science 332 1291
[39] Arrazola I, Hillenbrand R, Nikitin A Y 2014 Appl. Phys. Lett. 104 034507
[40] Kong X T, Bai B, Dai Q 2015 Opt. Lett. 40 1
[41] Gao W, Shi G, Jin Z, Shu J, Zhang Q, Vajtai R, Ajayan P M, Kono J, Xu Q 2013 Nano Lett. 13 3698
[42] Thongrattanasiri S, Koppens F H L, de Abajo F J G 2012 Phys. Rev. Lett. 108 047401
[43] Chen P Y, Alù A 2011 ACS Nano 5 5855
[44] Farhat M, Rockstuhl C, Bağcँ H 2013 Opt. Express 21 12592
[45] Chen L, Zhang T, Li X, Wang G 2013 Opt. Express 21 28628
[46] Liu P H, Cai W, Wang L, Zhang X Z, Xu J J 2012 Appl. Phys. Lett. 100 153111
[47] Ooi K J A, Chu H S, Bai P, Ang L K 2014 Opt. Lett. 39 1629
[48] Nikitin A Y, Guinea F, Garcia-Vidal F J, Martin-Moreno L 2012 Phys. Rev. B 85 081405
[49] Fang Z, Wang Y, Schlather A E, Liu Z, Ajayan P M, de Abajo F J G, Nordlander P, Zhu X, Halas N J 2013 Nano Lett. 14 299
[50] Fang Z Y, Thongrattanasiri S, Schlather A, Liu Z, Ma L L, Wang Y M, Ajayan P M, Nordlander P, Halas N J, de Abajo F J G 2013 ACS Nano 7 2388
[51] Yan H G, Li X S, Chandra B, Tulevski G, Wu Y Q, Freitag M, Zhu W J, Avouris P, Xia F N 2012 Nat. Nanotechnol. 7 330
[52] Adato R, Yanik A A, Amsden J J, Kaplan D L, Omenetto F G, Hong M K, Erramilli S, Altug H 2009 Proc. Natl. Acad. Sci. U.S.A. 106 19227
[53] Yan H, Low T, Guinea F, Xia F, Avouris P 2014 Nano Lett. 14 4581
[54] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F, Avouris P 2014 Nano Lett. 14 1573
[55] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M, Atwater H 2014 Nano Lett. 14 3876
[56] Liu F, Cubukcu E 2013 Phys. Rev. B 88 115439
计量
- 文章访问数: 12775
- PDF下载量: 2571
- 被引次数: 0