Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH+ cations

Xing Wei Li Sheng-Zhou Zhang Fang Sun Jin-Feng Li Wen-Tao Zhu Zun-Lüe

Citation:

Theoretical investigation on spectroscopic characteristics of 14 Λ-S and 27 Ω states of OH+ cations

Xing Wei, Li Sheng-Zhou, Zhang Fang, Sun Jin-Feng, Li Wen-Tao, Zhu Zun-Lüe
PDF
HTML
Get Citation
  • Based on the selection of appropriate active space and basis sets, and consideration of various physical effects such as scalar relativistic effect, core-valence electron correlation, complete basis set limit and spin-orbit coupling effect, the precise ionization energy of X3Σ/a1Δ/b1Σ+/A3Π/c1Π(OH+)←X2Π(OH), and the potential energy curves of 14 Λ-S and 27 Ω states of OH+ are obtained by using the optimized icMRCI + Q method. The transition dipole moments between six Ω states[$ {\mathrm{X}}{}^3\Sigma _{{0^ + }}^{{ - }} $, $ {{\text{X}}^{3}}{{\Sigma }}_{1}^{{ - }} $, (1)2, (2)2, (2)1, and (1)0] are obtained by using the all electron icMRCI/cc-pCV5Z + SOC theory. The ionization energy, spectroscopic and vibrational-rotational transition data obtained in this work are in good agreement with the existing measurements. The findings in this work are as follows. 1) The radiation lifetimes of (1)2(υ' = 0–6, J' = 2, +) gradually decrease with υ' increasing, while the radiation widths correspondingly increase; the spontaneous emissions of (1)2(υ' = 0–6, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) are weak. 2) The radiation lifetimes of (2)21st well(υ' = 0–2, J' = 2, +), (2)1(υ' = 0–9, J' = 1, +), and (1)0(υ' = 0–8, J' = 0, +) all gradually increase as υ' increases, while their radiation widths narrow with υ' increasing; the spontaneous emissions of (2)21st well(υ' = 0–2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –), (2)1(υ' = 0–9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –), and (1)0(υ' = 0–8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) are strong. 3) The radiation lifetimes of (2)21st well(υ' = 0–2, +), (2)1(υ' = 0–9, +), and (1)0(υ' = 0–8, +) all gradually increase with J' increasing. The datasets presented in this work, including the potential energy curves of 14 Λ-S and 27 Ω states, 7 pairs of transition dipole moments between the 6 Ω states [$ X{}^3\Sigma _{{0^ + }}^{{ - }} $, $ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $, (1)2, (2)2, (2)1, (1)0], and distributions of the radiative lifetime varying with the J' of the (2)21st well(υ' = 0–2, +), (2)1(υ' = 0–9, +), and (1)0(υ' = 0–8, +) states may be available at https://www.doi.org/10.57760/sciencedb.j00213.00058. (Data private access link https://www.scidb.cn/s/B7buIr)
  • 图 1  (a) OH+离子14个Λ-S态的势能曲线以及(b)第四离解极限O+(2Du) + H(2Sg)对应的6个态的放大图

    Figure 1.  Potential energy curves of OH+ cation for (a) 14 Λ-S states and (b) enlarged graphs of 6 states corresponding to the fourth dissociation limit O+(2Du) + H(2Sg).

    图 2  OH+离子27个Ω态的势能曲线

    Figure 2.  Potential energy curves of 27 Ω states of the OH+ cation.

    图 3  OH+ 7对跃迁的跃迁偶极矩曲线

    Figure 3.  Curves of the transition dipole moments versus internuclear separation of seven-pair states of the OH+.

    图 4  (2)2第一势阱(υ' = 0—2, +)态的辐射寿命随转动量子数J'的分布

    Figure 4.  Distributions of the radiative lifetime varying as the J' of the (2)21 st well (υ' = 0–2, +) state.

    图 6  (1)0(υ' = 0–8, +)态的辐射寿命随转动量子数J'的分布

    Figure 6.  Distributions of the radiative lifetime varying as the J' of the (1)0(υ' = 0–8, +) state.

    图 5  (2)1(υ' = 0–9, +)态的辐射寿命随转动量子数J'的分布

    Figure 5.  Distributions of the radiative lifetime varying as the J' of the (2)1(υ' = 0–9, +) state.

    表 1  OH+离子前5个离解极限产生的14个Λ-S态的离解关系

    Table 1.  Dissociation relationships of the 14 Λ-S states generated from the first five dissociation asymptotes of the OH+ cation.

    离解极限 Λ-S态 能量/cm–1
    本文 实验[41] 理论[33] 理论[38] 本文与实验[41]的偏差
    O(3Pg) + H+(1Sg) X3Σ, A3Π 0 0* 0 0 0
    O+(4Su) + H(2Sg) 23Σ, 15Σ 159 158 –3042 –3441 1(0.63%)
    O(1Dg) + H+(1Sg) a1Δ, b1Σ+, c1Π 15709 15739 30(0.19%)
    O+(2Du) + H(2Sg) 11Σ, 33Σ, 21Π, 23Π, 21Δ, 13Δ 26859 26979* 25123 24262 120(0.45%)
    O(1Sg) + H+(1Sg) 21Σ+ 33522 33664 142(0.42%)
    注: *表示J能级的算术平均值.
    DownLoad: CSV

    表 2  icMRCI + Q/56 + SR + CV理论水平上OH自由基X2Π态的垂直电离能(VIEs)和绝热电离能(AIEs)

    Table 2.  Vertical ionization energies (VIEs) and adiabatic ionization energies (AIEs) for X2Π state of OH radical at the theoretical level of icMRCI + Q/56 + SR + CV.

    电离VIEs/eVAIEs/eV
    本文本文实验[8]实验[9]实验[10]实验[11]实验[12]实验[13]理论[31]
    OH+(X3Σ)←OH(X2Π)12.89513.01013.01013.01013.01713.01613.020
    OH+(a1Δ)←OH(X2Π)15.01715.13715.20015.17015.178
    OH+(b1Σ+)←OH(X2Π)16.48116.59516.61016.599
    OH+(A3Π)←OH(X2Π)16.69916.48016.48016.474
    OH+(c1Π)←OH(X2Π)18.85818.31118.300a)
    注: a)表示利用实验值[9,11]和理论[32]导出的值.
    DownLoad: CSV

    表 3  icMRCI + Q/56 + SR + CV理论水平上OH+离子12个Λ-S态的光谱常数

    Table 3.  Spectroscopic constants of the 12 Λ-S states of OH+ at level of icMRCI + Q/56 + SR + CV.

    Λ-S态 来源 Te/cm–1 Re/nm ωe/cm–1 ωexe/cm–1 Be/cm–1 102αe/cm–1 De/eV Re处主要的价电子组态a
    X3Σ 本文 0 0.10275 3119.57 82.7602 16.8372 74.9926 5.183 22200(93.33%)
    实验[23] 0 0.10289 3119.3 83.1372 16.7946 74.883 5.1978±0.0056bc
    实验[24] 0 3119.29 83.1273 16.7945 74.8377 5.2009±0.0004bd
    实验[25] 0 3119.32 83.1606 16.7945 74.838
    实验[29] 0 0.10292 3119.3 83.139 16.7948 74.903 5.1817±0.0001be
    理论[31] 0 0.10283 3124 84.7 16.77 73.7 5.24
    理论[32] 0 0.10328 3104 77.8 16.57 69 5.31
    理论[33] 0 0.1031 3088.1 72.8 16.58 77 5.358
    理论[34] 0 0.10218 3128 16.41
    理论[35] 0 0.1031 3090 80.8 16.75 75 5.24
    理论[36] 0 0.10324 3124 72.1
    理论[38] 0 0.1034 3076.3 75.6 5.406
    理论[39] 0 0.10284 5.1949
    理论[40] 0 0.10286 3121.98 78.6019 16.8066 74.72 5.19
    a1Δ 本文 17275.95 0.10258 3099.03 69.1178 16.617 61.5397 4.984 22200(93.54%)
    实验[9] 28417.44f 0.1035 2960.00g 4.96
    实验[21] 16.4921h
    理论[32] 19042.74 0.10364 3122 76.6 16.61 67 5.05
    理论[36] 18002.8 0.10305 3164.1 68.9
    理论[37] 0.10242 3182 16.94 5.05
    A3Π 本文 28473.1 0.11345 2138.5 78.2863 13.7634 81.0012 1.653 21300(93.12%)
    实验[28] 28438.55 0.11354 2133.65 79.55 13.7916 88.89
    实验[29] 0.11354 13.7991 85.71
    实验[30] 2135.08 79.55 13.8127 89.174 1.6621i
    理论[32] 29350.5 0.1147 2187 87.6 13.66 80 1.66
    理论[33] 28689 0.1134 2219.8 83.2 13.8 88 1.786
    理论[34] 29520 0.11314 2100 13.46
    理论[35] 28914 0.1137 2178 86.4 13.76 85 1.7
    理论[36] 28772.9 0.11399 2157.5 78.4
    理论[39] 28522.65 0.10356 1.6938
    b1Σ+ 本文 28908.98 0.10285 3120.57 90.0316 16.8047 75.2825 3.5524 22200(89.10%)
    实验[9] 0.1032 16.2986j 3.52
    实验[27] 29063.23k 16.3070h
    实验[28] 29058.76k 0.10440l 16.3200h
    实验[29] 29060.88k 16.3057h
    理论[32] 30415.16 0.10398 3132 89 16.53 68 3.63
    理论[34] 30034 0.10216 2979 16.34
    理论[36] 29571 0.10331 3127.4 70.9
    15Σ 本文 41583.64 0.2943 231.573 41.7526 2.05857 38.2184 0.047 21210(95.72%)
    c1Π 本文 43398.91 0.12205 1807.3 52.1931 11.9113 63.5297 1.7697 21300(89.98%)
    理论[32] 45021.85 0.12382 1825 49.3 11.76 60 1.84
    理论[36] 44151.1 0.12258 1797.3 52.4
    11Σ 本文 68266.49 0.30473 205.002 24.5737 1.72803 12.7854 0.0415 21210(96.16%)
    13Δ 本文 68367.67 0.29629 229.065 41.8813 2.03045 37.9223 0.0456 21210(96.10%)
    33Σ 本文 68372.93 0.3365 166.609 41.479 1.60991 42.7186 0.0215 21210(88.50%)
    21Π 本文 68473.67 0.37389 142.463 36.1618 1.2721 30.9438 0.0221 22110(49.82%), 2σ20310(46.00%)
    23Π 本文 68500.45 0.32916 187.681 39.4373 1.65197 35.0742 0.0346 22110(49.63%), 2σ20310(46.34%)
    21Σ+ 本文 69946.13 0.20031 774.652 16.7243 4.39776 17.0302 0.7099 21210(79.24%), 2σ22200(13.54%)
    注: 上标a表示小括号里是组态函数系数的平方值; 上标b表示De = D0 + 1/2ωe – 1/4ωexe;
    上标c表示D0用实验值[14]; 上标d表示D0用实验值[15]; 上标e表示D0用实验值[16];
    上标f表示实验[29]T4值; 上标g表示ΔG1/2 = ωe – 2ωexe值; 上标h表示B0值;
    上标i表示实验[16]De值; 上标 j表示实验[26]B0值; 上标k表示T0值; 上标l表示r0值.
    DownLoad: CSV

    表 4  OH+离子27个Ω态的离解关系

    Table 4.  Dissociation relationships of the 27 Ω states of the OH+ cation.

    原子态Ω态能量/cm–1
    本文实验[41]偏差
    O(3P2) + H+(1S0)2, 1, 0+000
    O(3P1) + H+(1S0)1, 0+1561582(1.27%)
    O(3P0) + H+(1S0)02332276(2.64%)
    O+(4S3/2) + H(2S1/2)2, 1(2), 0+, 01591581(0.63%)
    O(1D2) + H+(1S0)2, 1, 0+157891586879(0.50%)
    O+(2D5/2) + H(2S1/2)3, 2(2), 1(2), 0+, 02685026969119(0.44%)
    O+(2D3/2) + H(2S1/2)2, 1(2), 0+, 02686526989124(0.46%)
    O(1S0) + H+(1S0)0+3360233793191(0.57%)
    DownLoad: CSV

    表 5  利用icMRCI + Q/56 + SR + CV + SOC理论获得的27个Ω态的光谱常数

    Table 5.  Spectroscopic constants obtained by the icMRCI + Q/56 + SR + CV + SOC calculations for the 27 Ω states.

    Ω态Te/cm–1Re/nmωe/cm–1ωexe/cm–1Be/cm–1102αe/cm–1De/eVRe附近主要的Λ-S态/%
    $ 1{}^1\Sigma _{{0^{{ - }}}}^{{ - }} $00.102753119.5682.759916.837174.99245.1839X3Σ (100.00)
    $ 1{}^1\Sigma _{{0^{{ - }}}}^{{ - }} $1.100.102753119.5682.760516.837174.99285.1839X3Σ (100.00)
    (1)217276.380.102583143.2075.269016.829765.34773.0345a1Δ(100.00)
    (2)2第一势阱28390.580.113442116.8587.164713.662683.55841.9206A3Π (100.00)
    (2)2第二势阱41585.610.29125307.074118.1272.1771357.21890.047615Σ (99.54), A3Π(0.46)
    (2)128474.200.113452138.5178.304913.763280.99141.6649A3Π (100.00)
    (2)0+28555.410.113441805.7530.482814.050219.46721.6535A3Π(99.80), b1Σ+ (0.20)
    (1)028558.920.113452143.1380.177713.751080.17931.6642A3Π (100.00)
    (3)0+29091.360.105904018.05516.73615.906292.31842.9603b1Σ+ (60.16), A3Π (39.84)
    (2)041616.120.27885508.208269.7883.27403261.1690.043215Σ (99.92), A3Π(0.08)
    (3)1第一势阱43400.670.122051819.7763.426011.931865.82960.4771c1Π (100.00)
    (3)1第二势阱41596.150.28279442.071249.9632.51688115.5170.045615Σ (99.86), A3Π(0.14)
    (3)244255.740.201682659.30144.4534.354889.355801.641715Σ (99.96), a1Δ(0.04)
    (4)149829.740.180302272.645.482510.3371c1Π (100.00)
    (5)154259.840.222121941.70151.3683.601300.6548050.422923Σ(100.00)
    (4)0+55193.040.218331647.3379.88043.6620413.67590.294923Σ(99.98), b1Σ+ (0.02)
    $ 1{}^1\Sigma _{{0^{{ - }}}}^{{ - }} $68267.800.30475204.96524.69761.7312011.91300.041311Σ(99.96), 23Π (0.04)
    (4)268368.100.29640230.0812.074140.020813Δ(99.48), 23Π (0.52)
    (6)168368.540.29656127.07718.71671.8250052.10920.020613Δ(99.92), 23Π (0.06), 21Π (0.02)
    13Δ368368.760.29637228.28141.38012.0359439.50810.045913Δ(99.60), 23Π (0.31), 21Π (0.09)
    (7)168401.460.31996250.949122.7771.5450022.12930.031933Σ(99.84), 23Π (0.14), 13Δ(0.02)
    $ 1{}^1\Sigma _{{0^{{ - }}}}^{{ - }} $68495.840.32899187.38739.43561.6536835.16020.034523Π (99.92), 11Σ(0.08)
    (8)168496.060.35896153.96514.47971.6180838.61840.030121Π (83.68), 13Δ(16.04), 33Σ (0.16), 23Π (0.12)
    (5)0+68497.370.32883186.69238.84881.6540635.21240.034523Π (99.78), 33Σ (0.22)
    (5)268506.370.33050174.74146.73081.5613027.07970.028623Π (98.56), 13Δ(1.41), 21Δ(0.03)
    (9)168521.740.34815254.96199.30481.4846643.64730.032623Π (74.31) , 21Π (25.33), 13Δ(0.20), 33Σ(0.16)
    (6)268577.040.38175239.914107.7961.2846045.27910.025521Δ(64.52), 23Π (21.84), 13Δ(13.64)
    (6)0+第一势阱69938.220.19913819.2494.572280.053221Σ+ (100.00)
    (6)0+第二势阱68372.930.33578170.4591.646050.020033Σ (99.80), 23Π (0.20)
    (7)0+71244.980.236181301.7584.45843.1975517.24620.549321Σ+ (100.00)
    DownLoad: CSV

    表 6  (1)2(υ' = 0—6, J' = 2, +) –$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 6.  Some of the relatively large rovibrational transition data of the (1)2(υ' = 0—6, J' = 2, +) –$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 17290.86 4.697 0.9999 1.178×10–7 578.75 (1, 1) 17325.10 4.805 0.9994 1.200×10–7 577.61
    (2, 2) 17364.56 5.000 0.9977 1.243×10–7 576.30 (3, 3) 17409.07 5.370 0.9925 1.328×10–7 574.82
    (4, 4) 17458.00 6.227 0.9692 1.532×10–7 573.21 (5, 5) 17507.16 8.971 0.8697 2.194×10–7 571.60
    (6, 5) 19754.69 2.405 0.0926 4.619×10–8 506.57 (6, 6) 17525.09 18.652 0.7184 4.552×10–7 571.02
    (6, 7) 15420.20 3.590 0.1383 1.132×10–7 648.96
    DownLoad: CSV

    表 11  (1)0(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 11.  Some of the relatively large rovibrational transition data of the (1)0(υ' = 0—8, J' = 0, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 28055.26 3.529×105 0.8487 6.722×10–4 356.69 (0, 1) 25099.04 5.942×104 0.1429 1.414×10–4 398.71
    (1, 0) 30035.40 2.672×105 0.6811 4.440×10–4 333.18 (1, 1) 27079.17 6.332×104 0.1614 1.294×10–4 369.55
    (1, 2) 24280.23 5.498×104 0.1401 1.398×10–4 412.15 (2, 0) 31855.40 1.351×105 0.3658 1.995×10–4 314.14
    (2, 1) 28899.17 1.964×105 0.5320 3.526×10–4 346.28 (2, 3) 23452.11 2.954×104 0.0800 8.052×10–5 426.70
    (3, 0) 33520.87 5.900×104 0.1716 7.871×10–5 298.53 (3, 1) 30564.65 1.891×105 0.5499 3.034×10–4 327.41
    (3, 2) 27765.71 7.060×104 0.2053 1.373×10–4 360.41 (3, 3) 25117.59 1.016×104 0.0296 2.415×10–5 398.41
    (4, 0) 35033.48 2.459×104 0.0779 3.004×10–5 285.64 (4, 1) 32077.25 1.268×105 0.4014 1.847×10–4 311.97
    (4, 2) 29278.31 1.351×105 0.4277 2.362×10–4 341.79 (4, 4) 24127.03 1.819×104 0.0576 4.684×10–5 414.77
    (5, 0) 36389.76 1.031×104 0.0361 1.167×10–5 275.00 (5, 1) 33433.53 7.329×104 0.2567 9.829×10–5 299.31
    (5, 2) 30634.59 1.363×105 0.4774 2.178×10–4 326.66 (5, 3) 27986.47 5.080×104 0.1779 9.723×10–5 357.57
    (5, 5) 23119.53 1.149×104 0.0402 3.222×10–5 432.84 (6, 1) 34625.09 3.990×104 0.1586 4.989×10–5 289.01
    (6, 2) 31826.15 1.057×105 0.4199 1.564×10–4 314.43 (6, 3) 29178.03 8.285×104 0.3293 1.459×10–4 342.97
    (7, 1) 35638.53 2.122×104 0.1002 2.505×10–5 280.79 (7, 2) 32839.59 7.141×104 0.3370 9.927×10–5 304.73
    (7, 3) 30191.47 8.521×104 0.4021 1.401×10–4 331.45 (7, 4) 27688.31 2.233×104 0.1054 4.367×10–5 361.42
    (8, 1) 36451.92 1.110×104 0.0674 1.253×10–5 274.53 (8, 2) 33652.98 4.397×104 0.2671 5.821×10–5 297.36
    (8, 3) 31004.86 6.811×104 0.4137 1.062×10–4 322.76 (8, 4) 28501.70 3.247×104 0.1972 5.992×10–5 351.11
    DownLoad: CSV

    表 12  (1)2(υ' = 0—6, J' = 2, +), (2)2第一势阱(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +)和(1)0(υ' = 0—8, J' = 0, +)态的辐射寿命(τυ'J')和辐射宽度(Γr)

    Table 12.  Spontaneous radiative lifetimes (τυ'J') and radiation widths (Γr) for the (1)2(υ' = 0—6, J' = 2, +), (2)21 st well(υ' = 0—2, J' = 2, +), (2)1(υ' = 0—9, J' = 1, +), and (1)0(υ' = 0—8, J' = 0, +) states.

    υ'(1)2(J' = 2, +)(2)2第一势阱(J' = 2, +)(2)1(J' = 1, +)(1)0(J' = 0, +)
    τυ'J'/sΓr/cm–1τυ'J'/μsΓr/cm–1τυ'J'/μsΓr/cm–1τυ'J'/μsΓr/cm–1
    02.129×10–12.494×10–114.0711.304×10–62.4252.189×10–62.4052.207×10–6
    12.080×10–12.553×10–114.3171.230×10–62.5752.062×10–62.5492.083×10–6
    21.995×10–12.661×10–114.5661.163×10–62.7421.936×10–62.7091.960×10–6
    31.848×10–12.872×10–112.9411.805×10–62.9081.826×10–6
    41.556×10–13.411×10–113.1931.663×10–63.1661.677×10–6
    59.695×10–25.476×10–113.5271.505×10–63.5021.516×10–6
    63.852×10–21.378×10–104.0031.326×10–63.9751.336×10–6
    74.7561.116×10–64.7191.125×10–6
    86.1338.656×10–76.0748.740×10–7
    99.7325.455×10–7
    DownLoad: CSV

    表 7  (2)2第一势阱(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 7.  Some of the relatively large rovibrational transition data of the (2)21 st well(υ' = 0—2, J' = 2, +)–$ {\text{X}}{}^3{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 27894.61 2.088×105 0.8501 2.011×10–3 358.75 (0, 1) 24939.11 3.481×104 0.1417 4.195×10–4 401.26
    (1, 0) 29872.69 1.578×105 0.6811 1.325×10–3 334.99 (1, 1) 26917.19 3.754×104 0.1620 3.883×10–4 371.77
    (1, 2) 24118.96 3.239×104 0.1398 4.174×10–4 414.91 (2, 0) 31697.63 7.997×104 0.3651 5.966×10–4 315.71
    (2, 1) 28742.14 1.167×105 0.5328 1.059×10–3 348.17 (2, 3) 23296.47 1.755×104 0.0801 2.424×10–4 429.55
    DownLoad: CSV

    表 8  (2)2第一势阱(υ' = 0—2, J' = 2, +)–(1)2(υ'' = 0—6, J'' = 2, –)系统一些相对大的振转跃迁数据

    Table 8.  Some of the relatively large rovibrational transition data of the (2)21 st well(υ'' = 0—2, J'' = 2, +)–(1)2(υ' = 0—6, J' = 2, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 10603.75 8.289×10–1 0.4227 5.526×10–8 943.73 (0, 1) 7614.01 9.020×10–1 0.4600 1.166×10–7 1314.30
    (0, 2) 4776.32 2.229×10–1 0.1137 7.323×10–8 2095.15 (1, 1) 9592.09 7.948×10–1 0.2470 6.475×10–8 1043.27
    (1, 2) 6754.40 1.695 0.5268 2.785×10–7 1481.57 (1, 3) 4062.45 6.954×10–1 0.2161 3.159×10–7 2463.32
    (2, 1) 11417.04 2.469×10–1 0.0522 1.420×10–8 876.51 (2, 2) 8579.35 3.663×10–1 0.0774 3.730×10–8 1166.42
    (2, 3) 5887.40 2.393 0.5057 5.176×10–7 1699.75 (2, 4) 3335.98 1.634 0.3453 1.101×10–6 2999.75
    DownLoad: CSV

    表 9  (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 9.  Some of the relatively large rovibrational transition data of the (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_{{{0}^ + }}^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (0, 0) 27965.39 3.506×105 0.8501 2.016×10–3 357.84 (0, 1) 25009.90 5.843×104 0.1417 4.202×10–4 400.13
    (1, 0) 29943.66 2.641×105 0.6799 1.325×10–3 334.20 (1, 1) 26988.16 6.325×104 0.1629 3.905×10–4 370.80
    (1, 2) 24189.93 5.441×104 0.1401 4.182×10–4 413.69 (2, 0) 31764.79 1.328×105 0.3643 5.921×10–4 315.04
    (2, 1) 28809.30 1.944×105 0.5331 1.053×10–3 347.36 (2, 3) 23363.62 2.932×104 0.0804 2.416×10–4 428.32
    (3, 0) 33431.51 5.815×104 0.1711 2.340×10–4 299.33 (3, 1) 30476.01 1.870×105 0.5501 9.054×10–4 328.36
    (3, 2) 27677.78 6.990×104 0.2056 4.104×10–4 361.56 (3, 3) 25030.34 1.005×104 0.0296 7.214×10–5 399.80
    (4, 0) 34944.02 2.441×104 0.0780 8.991×10–5 286.38 (4, 1) 31988.52 1.257×105 0.4015 5.524×10–4 312.83
    (4, 2) 29190.29 1.339×105 0.4276 7.066×10–4 342.82 (4, 4) 24040.36 1.797×104 0.0574 1.399×10–4 416.26
    (5, 0) 36299.50 1.030×104 0.0364 3.517×10–5 275.68 (5, 1) 33344.00 7.281×104 0.2569 2.945×10–4 300.12
    (5, 2) 30545.77 1.352×105 0.4771 6.518×10–4 327.61 (5, 3) 27898.33 5.042×104 0.1779 2.914×10–4 358.70
    (5, 5) 23032.70 1.136×104 0.0401 9.634×10–5 434.47 (6, 1) 34534.85 3.964×104 0.1588 1.495×10–4 289.77
    (6, 2) 31736.61 1.047×105 0.4196 4.677×10–4 315.32 (6, 3) 29089.18 8.218×104 0.3292 4.368×10–4 344.01
    (7, 1) 35547.78 2.106×104 0.1003 7.497×10–5 281.51 (7, 2) 32749.55 7.069×104 0.3367 2.964×10–4 305.56
    (7, 3) 30102.11 8.440×104 0.4020 4.189×10–4 332.44 (7, 4) 27599.61 2.217×104 0.1056 1.309×10–4 362.58
    (8, 1) 36360.64 1.099×104 0.0676 3.738×10–5 275.22 (8, 2) 33562.40 4.340×104 0.2669 1.733×10–4 298.16
    (8, 3) 30914.97 6.726×104 0.4135 3.165×10–4 323.70 (8, 4) 28412.47 3.211×104 0.1974 1.789×10–4 352.21
    (9, 2) 34140.09 2.256×104 0.2208 8.706×10–5 293.12 (9, 3) 31492.65 4.091×104 0.4004 1.855×10–4 317.76
    (9, 4) 28990.16 2.652×104 0.2595 1.419×10–4 345.19
    DownLoad: CSV

    表 10  (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –)系统一些相对大的振转跃迁数据

    Table 10.  Some of the relatively large rovibrational transition data of the (2)1(υ' = 0—9, J' = 1, +)–$ {\text{X}}{}^{3}{{\Sigma }}_1^{{ - }} $(υ'', J'' = 1, –) system.

    (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm (υ', υ'') $\tilde {v} $/cm–1 Aυ'J'υ''J''/s–1 Rυ'J'υ''J'' gfυ'J'υ''J'' λυ'J'υ''J''/nm
    (1, 2) 24188.98 14.520 0.4462 1.116×10–7 413.71 (1, 3) 21541.54 11.472 0.3525 1.112×10–7 464.55
    (2, 3) 23362.68 14.495 0.2927 1.194×10–7 428.34 (2, 4) 20860.18 22.383 0.4519 2.313×10–7 479.72
    (3, 5) 20163.77 31.625 0.4455 3.498×10–7 496.29 (3, 6) 17934.17 20.553 0.2895 2.874×10–7 557.99
    (4, 6) 19446.68 32.540 0.3270 3.870×10–7 514.59 (4, 7) 17341.78 37.885 0.3807 5.666×10–7 577.05
    (4, 8) 15355.11 16.627 0.1671 3.172×10–7 651.71 (5, 7) 18697.26 20.944 0.1501 2.694×10–7 535.22
    (5, 8) 16710.59 53.996 0.3871 8.697×10–7 598.85 (5, 9) 14841.43 38.644 0.2770 7.891×10–7 674.27
    (5, 10) 13079.78 13.397 0.0960 3.522×10–7 765.08 (6, 9) 16032.28 52.569 0.2677 9.199×10–7 624.19
    (6, 10) 14270.63 69.718 0.3551 1.540×10–6 701.24 (6, 11) 12614.35 38.853 0.1979 1.098×10–6 793.31
    (6, 12) 11057.45 11.896 0.0606 4.376×10–7 905.01 (7, 8) 18914.37 15.055 0.0540 1.893×10–7 529.07
    (7, 10) 15283.56 21.802 0.0782 4.198×10–7 654.76 (7, 11) 13627.29 82.287 0.2950 1.993×10–6 734.34
    (7, 12) 12070.38 84.988 0.3047 2.624×10–6 829.06 (7, 13) 10610.41 45.344 0.1626 1.811×10–6 943.14
    (7, 14) 9242.54 16.140 0.0579 8.498×10–7 1082.72 (8, 10) 16096.42 21.461 0.0525 3.725×10–7 621.70
    (8, 12) 12883.24 36.235 0.0886 9.819×10–7 776.75 (8, 13) 11423.27 1.084×102 0.2652 3.737×10–6 876.03
    (8, 14) 10055.40 1.167×102 0.2854 5.190×10–6 995.20 (8, 15) 8775.90 72.526 0.1774 4.235×10–6 1140.29
    (8, 16) 7582.30 28.761 0.0704 2.250×10–6 1319.80 (9, 12) 13460.92 25.783 0.0457 6.400×10–7 743.42
    (9, 14) 10633.08 18.148 0.0322 7.219×10–7 941.13 (9, 15) 9353.58 84.526 0.1499 4.345×10–6 1069.87
    (9, 16) 8159.98 1.224×102 0.2171 8.269×10–6 1226.36 (9, 17) 7049.23 1.066×102 0.1892 9.652×10–6 1419.60
    (9, 18) 6018.46 75.084 0.1332 9.323×10–6 1662.74 (9, 19) 5065.82 51.744 0.0918 9.068×10–6 1975.42
    (9, 20) 4190.19 32.125 0.0570 8.229×10–6 2388.22 (9, 21) 3390.23 14.439 0.0256 5.650×10–6 2951.75
    DownLoad: CSV
  • [1]

    Wyrowski F, Menten K M, Güsten R, Belloche A 2010 Astron. Astrophys. 518 A26Google Scholar

    [2]

    Gupta H, Rimmer P, Pearson J C, Yu S, Herbst E, Harada N, Bergin E A, Neufeld D A 2010 Astron. Astrophys. 521 L47Google Scholar

    [3]

    Van der Tak F F S, Nagy Z, Ossenkopf V, Makai Z, Black J H, Faure A, Gerin M, Bergin E A 2013 Astron. Astrophys. 560 A95Google Scholar

    [4]

    Barlow M J, Swinyard B M, Owen P J, Cernicharo J, Gomez H L, Ivison R J, Krause O, Lim T L, Matsuura M, Miller S, Olofsson G, Polehampton E T 2013 Science 342 1343Google Scholar

    [5]

    Aleman I, Ueta T, Ladjal D, Exter K M, Kastner J H, Montez Jr R, Tielens A G G M, Chu Y H, Izumiura H, McDonald I, Sahai R, Siódmiak N, Szczerba R, van Hoof P A M, Villaver E, Vlemmings W, Wittkowski M, Zijlstra A A 2014 Astron. Astrophys. 566 A79Google Scholar

    [6]

    Zhao D, Galazutdinov G A, Linnartz H, Krełowski J 2015 Astrophys. J. Lett. 805 L12Google Scholar

    [7]

    Rodebush W H, Wahl M H 1933 J. Chem. Phys. 1 696Google Scholar

    [8]

    Katsumata S, Lloyd D R 1977 Chem. Phys. Lett. 45 519Google Scholar

    [9]

    Van Lonkhuyzen H, De Lange C A 1984 Mol. Phys. 51 551Google Scholar

    [10]

    Wiedmann R T, Tonkyn R G, White M G, Wang K, McKoy V 1992 J. Chem. Phys. 97 768Google Scholar

    [11]

    Cutler J N, He Z X, Samson J A R 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4577Google Scholar

    [12]

    Barr J D, De Fanis A, Dyke J M, Gamblin S D, Hooper N, Morris A, Stranges S, West J B, Wright T G 1999 J. Chem. Phys. 110 345Google Scholar

    [13]

    Garcia G A, Tang X F, Gil J F, Nahon L, Ward M, Batut S, Fittschen C, Taatjes C A, Osborn D L, Loison J C 2015 J. Chem. Phys. 142 164201Google Scholar

    [14]

    Helm H, Cosby P C, Huestis D L 1984 Phys. Rev. A 30 851Google Scholar

    [15]

    Levin J, Hechtfischer U, Knoll L, Lange M, Saathoff G, Wester R, Wolf A, Schwalm D, Zajfman D 2000 Hyperfine Interact. 127 267Google Scholar

    [16]

    Hechtfischer U, Levin J, Lange M, Knoll L, Schwalm D, Wester R, Wolf A, Zajfman D 2019 J. Chem. Phys. 151 044303Google Scholar

    [17]

    Curtis L J, Erman P 1977 J. Opt. Soc. Am. 67 1218Google Scholar

    [18]

    Möhlmann G R, Bhutani K K, De Heer F J, Tsurubuchi S 1978 Chem. Phys. 31 273Google Scholar

    [19]

    Bekooy J P, Verhoeve P, Meerts W L, Dymanus A 1985 J. Chem. Phys. 82 3868Google Scholar

    [20]

    Gruebele M H W, Müller R P, Saykally R J 1986 J. Chem. Phys. 84 2489Google Scholar

    [21]

    Varberg T D, Evenson K M, Brown J M 1994 J. Chem. Phys. 100 2487Google Scholar

    [22]

    Crofton M W, Altman R S, Jagod M F, Oka T 1985 J. Phys. Chem. 89 3614Google Scholar

    [23]

    Rehfuss B D, Jagod M F, Xu L W, Oka T 1992 J. Mol. Spectrosc. 151 59Google Scholar

    [24]

    Markus C R, Hodges J N, Perry A J, Kocheril G S, Müller H S P, McCall B J 2016 Astrophys. J. 817 138Google Scholar

    [25]

    Müller H S P, Schlöder F, Stutzki J, Winnewisser G 2005 J. Mol. Struct. 742 215Google Scholar

    [26]

    Rodgers D J, Sarre P J 1988 Chem. Phys. Lett. 143 235Google Scholar

    [27]

    Rodgers D J, Batey A D, Sarre P J 2007 Mol. Phys. 105 849Google Scholar

    [28]

    Merer A J, Malm D N, Martin R W, Horani M, Rostas J 1975 Can. J. Phys. 53 251Google Scholar

    [29]

    Hodges J N, Bernath P F 2017 Astrophys. J. 840 81Google Scholar

    [30]

    Hodges J N, Bittner D M, Bernath P F 2018 Astrophys. J. 855 21Google Scholar

    [31]

    Meyer W 1974 Theoret. Chim. Acta 35 277Google Scholar

    [32]

    Hirst D M, Guest M F 1983 Mol. Phys. 49 1461Google Scholar

    [33]

    Saxon R P, Liu B 1986 J. Chem. Phys. 85 2099Google Scholar

    [34]

    de Vivie R, Marian C M, Peyerimhoff S D 1987 Chem. Phys. 112 349Google Scholar

    [35]

    Merchán M, Malmqvist P Å, Roos B O 1991 Theoret. Chim. Acta 79 81Google Scholar

    [36]

    Yarkony D R 1993 J. Phys. Chem. 97 111Google Scholar

    [37]

    Li X, Paldus J 2000 J. Mol. Struct. (Theochem) 527 165Google Scholar

    [38]

    Spirko J A, Mallis J T, Hickman A P 2000 J. Phys. B: At. Mol. Opt. Phys. 33 2395Google Scholar

    [39]

    Gómez-Carrasco S, Godard B, Lique F, Bulut N, Kłos J, Roncero O, Aguado A, Aoiz F J, Castillo J F, Goicoechea J R, Etxaluze M, Cernicharo J 2014 Astrophys. J. 794 33Google Scholar

    [40]

    Xavier F G D, Martínez-González M, Varandas A J C 2018 Chem. Phys. Lett. 691 421Google Scholar

    [41]

    Sansonetti J E, Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559Google Scholar

    [42]

    MOLPRO, version 2010.1, a package of ab initio programs, Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M http://www.molpro.net [2024-9-7]

    [43]

    朱宇豪, 李瑞 2024 物理学报 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [44]

    邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋 2022 物理学报 71 103101Google Scholar

    Xing W, Li S Z, Sun J F, Li W T, Zhu Z L, Liu F 2022 Acta Phys. Sin. 71 103101Google Scholar

    [45]

    邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭 2023 物理学报 72 163101Google Scholar

    Xing W, Li S Z, Sun J F, Cao X, Zhu Z L, Li W T, Li Y Y, Bai C X 2023 Acta Phys. Sin. 72 163101Google Scholar

    [46]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007Google Scholar

    [47]

    Wilson A K, van Mourik T, Dunning Jr T H 1996 J. Mol. Struct. (Theochem) 388 339Google Scholar

    [48]

    Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572Google Scholar

    [49]

    Wolf A, Reiher M, Hess B A 2002 J. Chem. Phys. 117 9215Google Scholar

    [50]

    Oyeyemi V B, Krisiloff D B, Keith J A, Libisch F, Pavone M, Carter E A 2014 J. Chem. Phys. 140 044317Google Scholar

    [51]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [52]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

  • [1] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, doi: 10.7498/aps.72.20230615
    [2] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, doi: 10.7498/aps.71.20220038
    [3] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, doi: 10.7498/aps.70.20210450
    [4] Luo Hua-Feng, Wan Ming-Jie, Huang Duo-Hui. Potential energy curves and transition properties for the ground and excited states of BH+ cation. Acta Physica Sinica, doi: 10.7498/aps.67.20172409
    [5] Li Chen-Xi, Guo Ying-Chun, Wang Bing-Bing. Ab initio calculation of the potential curve of B3u- state of O2. Acta Physica Sinica, doi: 10.7498/aps.66.103101
    [6] Huang Duo-Hui, Wan Ming-Jie, Wang Fan-Hou, Yang Jun-Sheng, Cao Qi-Long, Wang Jin-Hua. Potential energy curves and spectroscopic properties of GeS molecules: in ground states and low-lying excited states. Acta Physica Sinica, doi: 10.7498/aps.65.063102
    [7] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, doi: 10.7498/aps.63.123102
    [8] Li Rui, Zhang Xiao-Mei, Li Qi-Nan, Luo Wang, Jin Ming-Xing, Xu Hai-Feng, Yan Bing. All-electron configuration interaction study on potential energy curves of low-lying excited states and spectroscopic properties of SiS. Acta Physica Sinica, doi: 10.7498/aps.63.113102
    [9] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, doi: 10.7498/aps.63.083102
    [10] Zhu Zun-Lüe, Lang Jian-Hua, Qiao Hao. Spectroscopic properties and molecular constants of the ground and excited states of SF molecule. Acta Physica Sinica, doi: 10.7498/aps.62.163103
    [11] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, doi: 10.7498/aps.62.113102
    [12] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, doi: 10.7498/aps.62.083301
    [13] Gao Xue-Yan, You Kai, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+. Acta Physica Sinica, doi: 10.7498/aps.62.233302
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun Lüe. Potential energy curve and spectroscopic properties of PS (X2Π) radical. Acta Physica Sinica, doi: 10.7498/aps.62.203104
    [15] Guo Yu-Wei, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Investigation on the potential energy curves and spectroscopic properties of the low-lying excited states of BP. Acta Physica Sinica, doi: 10.7498/aps.62.193301
    [16] Yu Kun, Zhang Xiao-Mei, Liu Yu-Fang. Ab initio calculation on the potential energy curves and spectroscopic properties of the low-lying excited states of BCl. Acta Physica Sinica, doi: 10.7498/aps.62.063301
    [17] Shi De-Heng, Niu Xiang-Hong, Sun Jin-Feng, Zhu Zun-Lue. Spectroscopic parameters and molecular constants of X1+ and a3 electronic states of BF radical. Acta Physica Sinica, doi: 10.7498/aps.61.093105
    [18] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, doi: 10.7498/aps.60.063101
    [19] Wang Xin-Qiang, Yang Chuan-Lu, Su Tao, Wang Mei-Shan. Analytical potential energy functions and spectroscopic properties of the ground and excited states of BH molecule. Acta Physica Sinica, doi: 10.7498/aps.58.6873
    [20] Qian Qi, Yang Chuan-Lu, Gao Feng, Zhang Xiao-Yan. Multi-reference configuration interaction study on analytical potential energy function and spectroscopic constants of XOn(X=S,Cl; n=0,±1). Acta Physica Sinica, doi: 10.7498/aps.56.4420
Metrics
  • Abstract views:  180
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2024
  • Accepted Date:  11 October 2024
  • Available Online:  18 October 2024

/

返回文章
返回