Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Database of radiation opacity of low-density aluminum, iron and gold plasmas

ZENG Jiaolong GAO Cheng YUAN Jianmin

Citation:

Database of radiation opacity of low-density aluminum, iron and gold plasmas

ZENG Jiaolong, GAO Cheng, YUAN Jianmin
cstr: 32037.14.aps.74.20250301
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Radiative opacity plays an important role in investigating radiative transfer, radiation hydrodynamics and other relative disciplines. In practical applications, these data are mainly obtained by theoretical calculations. The accuracy of the theories is checked by limited experiments. Within the theoretical framework of detailed level accounting model, systematic theoretical investigations of the radiative opacity of plasmas such as aluminum, iron, and gold plasmas are conducted. A database of spectrally resolved radiative opacities and Rosseland and Planck mean opacities is established for densities ranging from 0.001 to 0.1 g/cm3 and temperatures from 1 to 300 eV. A data base is built based on these theoretical opacities. A huge number of quantum states are involved in the calculation of opacity, especially for high-Z gold plasmas. This poses a great challenge for obtaining accurate opacity of gold plasma. For such high-Z plasmas, it is necessary to develop other codes such as unresolved transition arrays or even average atom models to quickly obtain the opacity. Accurate opacity data are very lacking for such high-Z plasmas and the data presented in this library provides important references for other less detailed opacity codes.For aluminum and iron plasmas, their opacities are compared with those from the code ATOMIC. It is found that they are in good agreement for most cases of plasma conditions. Yet, discrepancies are still found in a few cases of plasma densities and temperatures, as indicated in the figures shown in the text. At photon energy of approximately 850 eV, however, some strong lines of aluminum plasma are notably absent in Al plasma generated by other codes, which will affect the radiative transfer in the X-ray region. In our code, we avoid such problems by including all possible line absorption and photoionization channels. The present dataset should be helpful in studying inertial confinement fusion, plasma physics and astrophysics. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.22232.
      Corresponding author: ZENG Jiaolong, jlzeng@zjut.edu.cn ; YUAN Jianmin, yuanjianmin@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174343, 12274384, 12335015).
    [1]

    Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [2]

    Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988 Appl. Phys. Lett. 52 847Google Scholar

    [3]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah Jr J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [4]

    Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024 Phys. Rev. E 110 065205Google Scholar

    [5]

    Zeng J L, Jin F T, Yuan J M 2001 Chin. Phys. Lett. 18 924Google Scholar

    [6]

    Zeng J L, Jin F T, Yuan J M, Lu Q S 2000 Phys. Rev. E 62 7251Google Scholar

    [7]

    Zeng J L, Yuan J L, Lu Q S 2001 Phys. Rev. E 64 066412Google Scholar

    [8]

    Zeng J L, Yuan J M 2002 Phys. Rev. E. 66 016401Google Scholar

    [9]

    Jin F T, Zeng J L, Yuan J M 2004 Phys. Plasmas 11 4318Google Scholar

    [10]

    Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996 Phys. Rev. E 53 R1332Google Scholar

    [11]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [12]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002Google Scholar

    [13]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302Google Scholar

    [14]

    Jin F T, Zeng J L, Yuan J M 2003 Phys. Rev. E 68 066401Google Scholar

    [15]

    Zeng J L, Jin F T, Zhao G, Yuan J M 2003 Chin. Phys. Lett. 20 862Google Scholar

    [16]

    Gao C, Zeng J L 2008 Phys. Rev. E 78 046407Google Scholar

    [17]

    靳奉涛, 曾交龙, 袁建民 2004 计算物理 21 121Google Scholar

    Jin F T, Zeng J L, Yuan J M 2004 Chin. J. Comput. Phys. 21 121Google Scholar

    [18]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M E, Wilson B G 2015 Nature 517 56Google Scholar

    [19]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [20]

    Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998 Europhys. Lett. 44 459Google Scholar

    [21]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011 Phys. Plasmas 18 113301Google Scholar

    [22]

    Zhang J Y, Yang G H, Yang J M, Ding Y N, Zhang B H, Zheng Z J, Yan J 2007 Phys. Plasmas 14 103301Google Scholar

    [23]

    Zeng J L, Zhao G, Yuan J M 2006 Chin. Phys. Lett. 23 660Google Scholar

    [24]

    Zeng J L, Yuan J M 2006 Phys. Rev. E 74 025401(RGoogle Scholar

    [25]

    Zeng J L, Yuan J M 2007 Phys. Rev. E 76 026401Google Scholar

    [26]

    Zeng J L 2008 J. Phys. B 41 125702Google Scholar

    [27]

    Gao C, Zeng J L, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 419Google Scholar

    [28]

    曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度 (长沙: 国防科技大学出版社)

    Zeng J L 2005 Detailed Term Accounting Investigation on Opacity of Aluminium Plasmas (Changsha: National University of Defense Technology Press

    [29]

    Zeng J L, Jin F T, Yuan J M 2006 Front. Phys. China 1 468Google Scholar

    [30]

    靳奉涛, 曾交龙, 袁建民 2005 物理 34 820Google Scholar

    Jin F T, Zeng J L, Yuan J M 2005 Physics 34 820Google Scholar

    [31]

    曾交龙, 袁建民, 赵增秀, 陆启生 2001 强激光与粒子束 13 60

    Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001 High Power Laser Part. 13 60

    [32]

    Iglesias C A, Rogers F J 1991 Astrophys. J. 371 408Google Scholar

    [33]

    Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994 Mon. Not. R. Astron. Soc. 266 805Google Scholar

    [34]

    Hansen S B, Bauche J, Bauche-Arnoult C, Gu M F 2007 High Energy Density Phys. 3 109Google Scholar

    [35]

    Porcherot Q, Pain J C, Gilleron F, Blenski T A 2011 High Energy Density Phys. 7 234Google Scholar

    [36]

    Blancard C, Cosse P, Faussurier G 2012 Astrophys. J. 745 10Google Scholar

    [37]

    Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013 High Energy Density Phys. 9 369Google Scholar

    [38]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 MRE 9 047801Google Scholar

    [39]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasmas 25 023301Google Scholar

    [40]

    Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [41]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [42]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024 Chin. Phys. B 33 053101Google Scholar

    [43]

    Zeng J L, Li Y J, Hou Y, Yuan J M, 2023 Phys. Rev. E 107 L033201Google Scholar

    [44]

    Huang Y H, Liang Z H, Zeng J L, Yuan J M 2024 Phys. Rev. E 109 045210Google Scholar

    [45]

    Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M 2018 Commun. Phys. 1 95Google Scholar

    [46]

    Zeng J L, Li Y J, Yuan J M 2021 J. Quant. Spectrosc. Radiat. Transf. 272 107777Google Scholar

    [47]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024 Results Phys. 58 107522Google Scholar

    [48]

    Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M 2022 Int. J. Mol. Sci. 23 6033Google Scholar

    [49]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022 Sci. China-Phys. Mech. Astron. 65 233011Google Scholar

    [50]

    Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 583Google Scholar

  • 图 1  密度为0.1 g/cm3、温度为100 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Figure 1.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.1 g/cm3 and a temperature of 100 eV.

    图 2  密度为0.1 g/cm3、温度为10 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Figure 2.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.1 g/cm3 and a temperature of 10 eV.

    图 3  密度为0.001 g/cm3、温度为100 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Figure 3.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.001 g/cm3 and a temperature of 100 eV.

    图 4  密度为0.001 g/cm3、温度为10 eV的Al等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Figure 4.  Comparison of opacity obtained by present work and ATOMIC code for Al plasma at a density of 0.001 g/cm3 and a temperature of 10 eV.

    图 5  密度为0.1 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Figure 5.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature of 100 eV.

    图 6  图5在光子能量0—1500 eV范围内的放大, 密度为0.1 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较. 这个光子能量范围决定了Rosseland和Planck平均不透明度

    Figure 6.  Comparison of opacity in photon energy range of 0–1500 eV obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature of 100 eV. The Rosseland and Planck mean opacities are largely contributed by this photon energy range.

    图 7  密度为0.1 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Figure 7.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.1 g/cm3 and a temperature of 10 eV.

    图 8  密度为0.001 g/cm3、温度为100 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Figure 8.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature of 100 eV.

    图 9  密度为0.001 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件的结果

    Figure 9.  Comparison of opacity obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature of 10 eV.

    图 10  Fe等离子体不透明度图9在光子能量0—1200 eV范围内的放大, 密度为0.001 g/cm3、温度为10 eV的Fe等离子体不透明度与ATOMIC软件计算的结果比较, 其中实线为本工作得到的结果, 红虚线为ATOMIC软件得到的结果

    Figure 10.  Comparison of opacity in a photon energy range of 0–1200 eV obtained by present work and ATOMIC code for Fe plasma at a density of 0.001 g/cm3 and a temperature of 10 eV.

    图 11  密度为0.01 g/cm3、温度分别为10, 20, 40, 100, 200 eV条件下的Au等离子体不透明度

    Figure 11.  Opacity of Au plasma at a density of 0.01 g/cm3 and temperatures of 10, 20, 40, 100, 200 eV.

    图 12  密度为0.01 g/cm3、温度为100 eV条件下的Au等离子体不透明度在两个主要谱线吸收区域的放大

    Figure 12.  Opacity of Au plasma at a density of 0.01 g/cm3 and a temperature of 100 eV contributed dominantly by line absorption.

    表 1  铝等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 1.  Rosseland and Planck mean opacities (cm2/g) of Al plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    27433350011087959474839110647474197177509402629180822359046
    575514462087666832911913806582579011354230749118019
    101042123922314149923704.4173959399.6284221350436801
    201246287043385404165206.44525114575568122267962396
    50405.45686.71711101532826.8125987321.4183809899.520553
    10013.35102.8770.71430.02141.81748.41575.152409.4875.083486.0
    1501.85666.0307.442102.9117.045142.6975.255399.56136.60626.05
    2001.011113.102.888208.527.2548254.7732.294366.7168.368447.57
    2500.63249.9661.903161.384.4554239.3722.087461.3751.632571.70
    3000.44615.5751.18068.4282.7127123.4815.009353.1638.217499.53
    DownLoad: CSV

    表 2  铁等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 2.  Rosseland and Planck mean opacities (cm2/g) of Fe plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    2692151227159358514391510102914380510065212043285765113541
    59788136192349827432317423513348273529655280361748
    105315298791213132782161943411426873385853155242038
    207161369741258443595157004607125757509313115054002
    5014455884.94158120065332.3143157820.316013879316451
    10028.181047.9103.61480.7191.431796.2698.522675.010643285.1
    15026.391153.876.251883.5114.022283.2257.793101.6358.93324.9
    2009.206507.1449.101130.587.1431487.9245.452462.3349.52887.7
    2502.560118.7915.45424.0936.795661.47173.291455.3280.11878.9
    3001.00928.0965.710127.3713.817229.0779.424685.91158.01000.9
    DownLoad: CSV

    表 3  金等离子体在不同密度和不同温度T条件下的Rosseland和Planck平均不透明度(cm2/g)

    Table 3.  Rosseland and Planck mean opacities (cm2/g) of Au plasmas at different densities and different temperatures.

    T/eV0.001 g/cm30.005 g/cm30.01 g/cm30.05 g/cm30.1 g/cm3
    Rosse.PlanckRosse.PlanckRosse.PlanckRosse.PlanckRosse.Planck
    225768512054385754878492685367044582431703575235122
    515954382793043744722378624687246119478134342045362
    1014646430512193548723266835115436889551483993255264
    203779301355571349036315365538716392401014639855
    50156572581922868320999326271110886311311492
    100594.75570882.96501104169261648789421088307
    150346.72781683.53523922.538901460508817075579
    200181.21239383.61830495.82099874.0283810933156
    25057.16529.3212.2932.5298.41127561.71679699.81945
    30011.19342.669.32573.9138.7717.1349.91093456.51284
    DownLoad: CSV
  • [1]

    Hurricane O A, Patel P K, Betti, R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [2]

    Davidson S J, Foster J M, Smith C C, Warburton K A, Rose S J 1988 Appl. Phys. Lett. 52 847Google Scholar

    [3]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah Jr J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [4]

    Qiang Y, Ye F, Lu J, Yan X S, Yang R H, Jiang S Q, Ning J M, Zhou L, Chen F X, Yang J L, Wang D M, Xu Z P, You H B, Zhang F Q, Li Z H, Wang G Q, Xiao D L, Wu Z Q, Meng S J, Huang X B, Xu Q, Zhou S T, Zhang D Y, Zhang S Q, Ren X D, Ji C, Li Y, Cai P T, Ren J, Chen S, Zhang H Y 2024 Phys. Rev. E 110 065205Google Scholar

    [5]

    Zeng J L, Jin F T, Yuan J M 2001 Chin. Phys. Lett. 18 924Google Scholar

    [6]

    Zeng J L, Jin F T, Yuan J M, Lu Q S 2000 Phys. Rev. E 62 7251Google Scholar

    [7]

    Zeng J L, Yuan J L, Lu Q S 2001 Phys. Rev. E 64 066412Google Scholar

    [8]

    Zeng J L, Yuan J M 2002 Phys. Rev. E. 66 016401Google Scholar

    [9]

    Jin F T, Zeng J L, Yuan J M 2004 Phys. Plasmas 11 4318Google Scholar

    [10]

    Winhart G, Eidmann K, Iglesias C A, Bar-Shalom A 1996 Phys. Rev. E 53 R1332Google Scholar

    [11]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [12]

    Bailey J E, Rochau G A, Iglesias C A, Abdallah Jr J, MacFarlane J J, Golovkin I, Wang P, Mancini R C, Lake P W, Moore T C, Bump M, Garcia O, Mazevet S 2007 Phys. Rev. Lett. 99 265002Google Scholar

    [13]

    Zhang J Y, Li H, Zhao Y, Xiong G, Yuan Z, Zhang H Y, Yang G H, Yang J M, Liu S Y, Jiang S E, Ding Y K, Zhang B H, Zheng Z J, Xu Y, Meng X J, Yan J 2012 Phys. Plasmas 19 113302Google Scholar

    [14]

    Jin F T, Zeng J L, Yuan J M 2003 Phys. Rev. E 68 066401Google Scholar

    [15]

    Zeng J L, Jin F T, Zhao G, Yuan J M 2003 Chin. Phys. Lett. 20 862Google Scholar

    [16]

    Gao C, Zeng J L 2008 Phys. Rev. E 78 046407Google Scholar

    [17]

    靳奉涛, 曾交龙, 袁建民 2004 计算物理 21 121Google Scholar

    Jin F T, Zeng J L, Yuan J M 2004 Chin. J. Comput. Phys. 21 121Google Scholar

    [18]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Golovkin I E, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M E, Wilson B G 2015 Nature 517 56Google Scholar

    [19]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse Ph, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [20]

    Eidmann K, Bar-Shalom A, Saemann A, Winhart G, 1998 Europhys. Lett. 44 459Google Scholar

    [21]

    Zhang J Y, Xu Y, Yang J M, Yang G H, Li H, Yuan Z, Zhao Y, Xiong G, Bao L H, Huang C W, Wu Z Q, Yan J, Ding Y K, Zhang B H, Zheng Z J 2011 Phys. Plasmas 18 113301Google Scholar

    [22]

    Zhang J Y, Yang G H, Yang J M, Ding Y N, Zhang B H, Zheng Z J, Yan J 2007 Phys. Plasmas 14 103301Google Scholar

    [23]

    Zeng J L, Zhao G, Yuan J M 2006 Chin. Phys. Lett. 23 660Google Scholar

    [24]

    Zeng J L, Yuan J M 2006 Phys. Rev. E 74 025401(RGoogle Scholar

    [25]

    Zeng J L, Yuan J M 2007 Phys. Rev. E 76 026401Google Scholar

    [26]

    Zeng J L 2008 J. Phys. B 41 125702Google Scholar

    [27]

    Gao C, Zeng J L, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 419Google Scholar

    [28]

    曾交龙2005使用细致谱项模型研究铝等离子体的辐射不透明度 (长沙: 国防科技大学出版社)

    Zeng J L 2005 Detailed Term Accounting Investigation on Opacity of Aluminium Plasmas (Changsha: National University of Defense Technology Press

    [29]

    Zeng J L, Jin F T, Yuan J M 2006 Front. Phys. China 1 468Google Scholar

    [30]

    靳奉涛, 曾交龙, 袁建民 2005 物理 34 820Google Scholar

    Jin F T, Zeng J L, Yuan J M 2005 Physics 34 820Google Scholar

    [31]

    曾交龙, 袁建民, 赵增秀, 陆启生 2001 强激光与粒子束 13 60

    Zeng J L, Yuan J M, Zhao Z X, Lu Q S 2001 High Power Laser Part. 13 60

    [32]

    Iglesias C A, Rogers F J 1991 Astrophys. J. 371 408Google Scholar

    [33]

    Seaton M J, Yan Y, Mihalas D, Pradhan A K 1994 Mon. Not. R. Astron. Soc. 266 805Google Scholar

    [34]

    Hansen S B, Bauche J, Bauche-Arnoult C, Gu M F 2007 High Energy Density Phys. 3 109Google Scholar

    [35]

    Porcherot Q, Pain J C, Gilleron F, Blenski T A 2011 High Energy Density Phys. 7 234Google Scholar

    [36]

    Blancard C, Cosse P, Faussurier G 2012 Astrophys. J. 745 10Google Scholar

    [37]

    Colgan J, Kilcreasea D P, Magee Jr N H, Armstronga G S J, Abdallah Jr J, Sherrill M E, Fontes C J, Zhang H L, Hakel P 2013 High Energy Density Phys. 9 369Google Scholar

    [38]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 MRE 9 047801Google Scholar

    [39]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasmas 25 023301Google Scholar

    [40]

    Gang X, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [41]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y B, Yan G B, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [42]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y, Wu Y 2024 Chin. Phys. B 33 053101Google Scholar

    [43]

    Zeng J L, Li Y J, Hou Y, Yuan J M, 2023 Phys. Rev. E 107 L033201Google Scholar

    [44]

    Huang Y H, Liang Z H, Zeng J L, Yuan J M 2024 Phys. Rev. E 109 045210Google Scholar

    [45]

    Liu P F, Gao C, Hou Y, Zeng J L, Yuan J M 2018 Commun. Phys. 1 95Google Scholar

    [46]

    Zeng J L, Li Y J, Yuan J M 2021 J. Quant. Spectrosc. Radiat. Transf. 272 107777Google Scholar

    [47]

    Zeng J L, Jiang X B, Gao C, Wu J H, Yuan J M, 2024 Results Phys. 58 107522Google Scholar

    [48]

    Zeng J L, Ye C, Liu P F, Gao C, Li Y J, Yuan J M 2022 Int. J. Mol. Sci. 23 6033Google Scholar

    [49]

    Zeng J L, Gao C, Liu P F, Li Y J, Meng C S, Hou Y, Kang D D, Yuan J M 2022 Sci. China-Phys. Mech. Astron. 65 233011Google Scholar

    [50]

    Gao C, Zeng J L, Li Y Q, Jin F T, Yuan J M 2013 High Energy Density Phys. 9 583Google Scholar

  • [1] AN Siyaolitu, WANG Tong, XIAO Lidan, LIU Di, ZHANG Xia, YAN Bing. Opacities of X2Σ+, A2Π, and B2Σ+ states of CO+ molecule ion. Acta Physica Sinica, 2025, 74(12): 123101. doi: 10.7498/aps.74.20250380
    [2] Gao Cheng, Liu Yan-Peng, Yan Guan-Peng, Yan Jie, Chen Xiao-Qi, Hou Yong, Jin Feng-Tao, Wu Jian-Hua, Zeng Jiao-Long, Yuan Jian-Min. Theoretical investigation on extreme ultraviolet radiative opacity and emissivity of Sn plasmas at local-thermodynamic equilibrium. Acta Physica Sinica, 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [3] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Opacities of ${ X}^1\Sigma^+_{\rm g}, a'{}^1\Sigma^-_{\rm u}, a{}^1\Pi_{\rm g} \text{ and } { b}^1\Pi_{\rm u}$ electronic states for nitrogen molecule. Acta Physica Sinica, 2022, 71(14): 143102. doi: 10.7498/aps.71.20220043
    [4] Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo. Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation. Acta Physica Sinica, 2022, 71(19): 193101. doi: 10.7498/aps.71.20220734
    [5] Yu Geng-Hua, Yan Hui, Gao Dang-Li, Zhao Peng-Yi, Liu Hong, Zhu Xiao-Ling, Yang Wei. Calculationof isotope shift of Mg+ ion by using the relativistic multi-configuration interaction method. Acta Physica Sinica, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [6] Zhou Rui, Li Chuan-Liang, He Xiao-Hu, Qiu Xuan-Bing, Meng Hui-Yan, Li Ya-Chao, Lai Yun-Zhong, Wei Ji-Lin, Deng Lun-Hua. Spectroscopic properties of low-lying excited electronic states for CF- anion based on ab initio calculation. Acta Physica Sinica, 2017, 66(2): 023101. doi: 10.7498/aps.66.023101
    [7] Xiong Zhuang, Wang Zhen-Xin, Naoum C. Bacalis. Accuracy study for excited atoms (ions):A new variational method. Acta Physica Sinica, 2014, 63(5): 053104. doi: 10.7498/aps.63.053104
    [8] Gao Xue-Yan, You Kai, Zhang Xiao-Mei, Liu Yan-Lei, Liu Yu-Fang. Multi-reference calculations on the potential energy curves and spectroscopic properties of the low-lying excited states of BS+. Acta Physica Sinica, 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [9] Zhang Ji-Yan, Yang Jia-Min, Yang Guo-Hong, Ding Yao-Nan, Li Jun, Yan Jun, Wu Ze-Qing, Ding Yong-Kun, Zhang Bao-Han, Zheng Zhi-Jian. Investigations on radiative opacity measurement by the method of direct laser-heating and self-backlighting. Acta Physica Sinica, 2013, 62(19): 195201. doi: 10.7498/aps.62.195201
    [10] Wang Rui-Rong, Wang Wei, Fang Zhi-Heng, An Hong-Hai, Jia Guo, Xie Zhi-Yong, Meng Xiang-Fu. Experimental studies on the opacity of dense aluminum compressed by a laser-driven shock waves. Acta Physica Sinica, 2013, 62(12): 125202. doi: 10.7498/aps.62.125202
    [11] Dong Fu-Tong, Wang Fei-Lu, Zhong Jia-Yong, Zhao Gang. Research on the opacity of Fe M-shell unresolved transition array. Acta Physica Sinica, 2012, 61(16): 163201. doi: 10.7498/aps.61.163201
    [12] Li Zun-Mao, Xiong Zhuang, Dai Li-Li. Calculation of geometrically active atomic state. Acta Physica Sinica, 2010, 59(11): 7824-7829. doi: 10.7498/aps.59.7824
    [13] Yuan Wei-Guo, Dai Chang-Jian, Jin Song, Zhao Hong-Ying, Guan Feng. Study of Ba 6pnd(J=1, 3)autoionizing states. Acta Physica Sinica, 2008, 57(7): 4076-4082. doi: 10.7498/aps.57.4076
    [14] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [15] Ma Wen, Jin Feng-Tao, Yuan Jian-Min. Effect of line shift on the calculated radiative opacity using average atom approach. Acta Physica Sinica, 2007, 56(10): 5709-5714. doi: 10.7498/aps.56.5709
    [16] Wan Jian-Jie, Xie Lu-You, Dong Chen-Zhong, Jiang Jun, Yan Jun. Theoretical study of forbidden M1, M2, E2 transitions for highly charged Ni-like ions. Acta Physica Sinica, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [17] Jiang Min-Hao, Meng Xu-Jun. A Hartree-Fock-Slater-Boltzmann-Saha method for detailed atomic structure and equation of state of plasmas. Acta Physica Sinica, 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [18] QI JING-BO, CHEN CHONG-YANG, WANG YAN-SEN. ELECTRON IMPACT IONIZATION CROSS SECTIONS FOR THE Na-LIKE IONS. Acta Physica Sinica, 2001, 50(8): 1475-1480. doi: 10.7498/aps.50.1475
    [19] WANG FAN-HOU, CHEN JING-PING, MENG XU-JUN, ZHOU XIAN-MING, LI XI-JUN, SUN YONG-SHENG, JING FU-QIAN. STUDIES ON OPACITY OF SHOCK-GENERATED ARGON PLASMAS. Acta Physica Sinica, 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
    [20] TENG HUA-GUO, SHEN BAI-FEI, ZHANG WEN-QI, XU ZHI-ZHAN. EFFECT OF CONFIGURATION INTERACTION ON THE AUTOIONIZATION RATES AND BRANCH RATIOS OF Na LIKE Cu ION. Acta Physica Sinica, 1994, 43(2): 205-210. doi: 10.7498/aps.43.205
Metrics
  • Abstract views:  255
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2025
  • Accepted Date:  27 April 2025
  • Available Online:  17 May 2025
  • Published Online:  20 June 2025

/

返回文章
返回