Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on excited states of ICl+ molecular ion considering spin-orbit coupling

LI Rui DOU Ronglong GAO Ting LI Qinan SONG Chaoqun

Citation:

Theoretical study on excited states of ICl+ molecular ion considering spin-orbit coupling

LI Rui, DOU Ronglong, GAO Ting, LI Qinan, SONG Chaoqun
cstr: 32037.14.aps.74.20250510
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The electronic structure of the ICl+ molecular ion is investigated by using high-level multireference configuration interaction (MRCI) method. To improve computational accuracy, Davidson corrections, spin-orbit coupling (SOC), and core-valence electron correlations effects are incorporated into the calculations. The potential energy curves (PECs) of 21 Λ-S states associated with the two lowest dissociation limits I+(1Dg)+Cl(2Pu) and I+(3Pg)+Cl(2Pu) are obtained. The dipole moments (DMs) of the 21 Λ-S states of ICl+ are systematically studied, and the variations of DMs of the identical symmetry state (22Σ+/32Σ+ and 22Π/32Π) in the avoided crossing regions are elucidated by analyzing the dominant electronic configuration. When considering the SOC effect, the Λ-S states with the same Ω components may form new avoided crossing point, making the PECs more complex. With the help of calculated SOC matrix element, the interaction between crossing states can be elucidated. Spin-orbit coupling matrix elements involving the 22Π, 32Π, 12Δ and 22Δ states are calculated. By analyzing potential energy curves of these states and the nearby electronic states, the possible predissociation channels for 22Π, 32Π, 12Δ and 22Δ states are provided. Based on the computed PECs, the spectroscopic constants of bound Λ-S and Ω states are determined. The comparison of the spectroscopic constants between Λ-S and Ω states indicates that the SOC effect has an obvious correction to the spectroscopic properties of low-lying states. Finally, the transition properties between excited states and the ground state are studied. Based on the computed transition dipole moments and Franck-Condon factors, radiative lifetimes for the low-lying vibrational levels of excited states are evaluated. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j 00213.00140.
      Corresponding author: LI Rui, ruili06@mails.jlu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2022A026), the Fundamental Research Funds in Heilongjiang Province Universities, China (Grant Nos. 145409330, 145309621), and the National Natural Science Foundation of China (Grant No. 42371113).
    [1]

    Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239Google Scholar

    [2]

    Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375Google Scholar

    [3]

    Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087Google Scholar

    [4]

    Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598Google Scholar

    [5]

    Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81Google Scholar

    [6]

    Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242Google Scholar

    [7]

    Eland J H D 1979 J. Chem. Phys. 70 2926Google Scholar

    [8]

    Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J. Mass Spectro. Ion Phys. 7 209Google Scholar

    [9]

    Venkateswarlu P 1975 Can. J. Phys. 53 812Google Scholar

    [10]

    Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43Google Scholar

    [11]

    Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327Google Scholar

    [12]

    Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559Google Scholar

    [13]

    Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398Google Scholar

    [14]

    Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227Google Scholar

    [15]

    Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.Google Scholar

    [16]

    Balasubramanian K 1985 Chem. Phys. 95 225Google Scholar

    [17]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242Google Scholar

    [18]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [19]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [20]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [25]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [26]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [27]

    Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B 34 043101Google Scholar

    [28]

    刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101Google Scholar

    Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101Google Scholar

    [29]

    朱宇豪, 李瑞 2024 物理学报 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [30]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y 2024 Chin. Phys. B 33 053101Google Scholar

    [31]

    伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101Google Scholar

    Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101Google Scholar

    [32]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) p342

    [34]

    Moore C E 1971 Atomic Energy Levels (Washington (DC): National Bureau of Standards Publications

  • 图 1  ICl+分子离子的Λ-S态势能曲线

    Figure 1.  Potential energy curves of the Λ-S states of ICl+ molecular ion.

    图 2  ICl+分子离子的Λ-S态偶极矩曲线 (a)双重态的偶极矩; (b)四重态的偶极矩

    Figure 2.  Dipole moments curves of the Λ-S states of ICl+ molecular ion: (a) Dipole moment of the doublet state; (b) dipole moment of the quartet state.

    图 3  22Π/32Π (a)和22Σ+/32Σ+ (b)的组态权重 (c2)

    Figure 3.  The R-dependent weights (c2) of the electronic configurations of 22Π/32Π (a) and 22Σ+/32Σ+ (b) states.

    图 4  交叉区域振动能级的放大视图

    Figure 4.  An amplified view of crossing region with the corresponding vibrational levels.

    图 5  包含22Π, 12Δ态(a)和22Δ, 32Π态(b)的自旋-轨道耦合矩阵元随核间距的变化

    Figure 5.  Variation curves of spin-orbit coupling matrix elements of 22Π, 12Δ states (a) and 22Δ, 32Π states (b) with internuclear distance.

    图 6  ICl+分子离子的Ω态势能曲线

    Figure 6.  Potential energy curves of the Ω states of ICl+ molecular ion.

    图 7  ICl+分子离子跃迁偶极矩曲线

    Figure 7.  Transition dipole moments curves of ICl+ molecular ion.

    表 1  ICl+分子离子Re附近的组态权重和垂直激发能

    Table 1.  Electronic configuration and vertical excitation energies of ICl+ molecular ion at Re.

    Λ-S 态 Re 附近的组态权重/% T/cm–1
    Χ2Π 22210σ211σ0443(91) 0
    $ {1^4}{\Sigma ^ - } $ 22210σ211σ1442(77)
    22210σ211σ1433(20)
    18885.3
    22Π 22210σ211σ0434(87)
    22210σ111σ1443(6)
    23660.8
    12Δ 22210σ211σ1442(67)
    22210σ211σ1433(29)
    25549.0
    12Σ+ 22210σ211σ1442(59)
    22210σ211σ1433(34)
    28700.8
    22Σ+ 22210σ111σ0444(94) 33963.0
    14Δ 22210σ211σ1433(99) 35589.7
    22Δ 22210σ211σ1433(96) 43617.4
    32Σ+ 22210σ211σ1433(95) 44332.0
    $ {3^2}{\Sigma ^ - } $ 22210σ211σ1433(67)
    22210σ111σ2442(22)
    22210σ211σ1442(9)
    52169.3
    32Π 22210σ211σ2441(48)
    22210σ211σ2432(48)
    53534.0
    DownLoad: CSV

    表 2  ICl+分子离子Λ-S态的光谱常数

    Table 2.  Spectroscopic constants of the Λ-S states of ICl+ molecular ion.

    Λ-S态 Te/cm–1 D0/eV Be/cm–1 ωe/cm–1 Re
    Χ2Π 本文 0 2.50 0.1221 432 2.24
    实验a) 0 2.52
    22Π 本文 18218 0.27 0.0915 259 2.59
    实验b) 19551
    理论c) 14352 207 2.78
    12Δ 本文 17516 0.35 0.0737 109 2.89
    14Σ 本文 13617 0.83 0.0889 218 2.63
    14Δ 本文 17183 0.39 0.0670 138 3.03
    12Σ+ 本文 18015 0.28 0.0654 153 3.05
    32Π 本文 22122 0.80 0.0628 526 3.14
    实验a) 22420
    22Δ 本文 24768 0.52 0.0696 171 2.97
    22Σ+ 本文 25192 0.47 0.0687 164 2.99
    32Σ 本文 25241 0.46 0.0630 181 3.13
    注: a)文献[33]; b)文献[12]; c)文献[16].
    DownLoad: CSV

    表 3  ICl+分子离子Ω态的解离关系

    Table 3.  Dissociation relationships of Ω states of ICl+ molecular ion.

    原子态
    (I++Cl)
    Ω态能量/cm–1
    本文实验a)
    I+(3Pg2)+Cl(2Pu3/2)7/2, 5/2(2), 3/2(3), 1/2(4)00
    I+(3Pg2)+Cl(2Pu1/2)5/2, 3/2(2), 1/2(2)821882
    I+(3Pg0)+Cl(2Pu3/2)3/2, 1/264336448
    I+(3Pg1)+Cl(2Pu3/2)5/2, 3/2(2), 1/2(3)69017087
    I+(3Pg0)+Cl(2Pu1/2)1/272547330
    I+(3Pg1)+Cl(2Pu1/2)3/2, 1/2(2)77227969
    I+(1Dg2)+Cl(2Pu3/2)7/2, 5/2(2), 3/2(3), 1/2(4)1395013727
    I+(1Dg2)+Cl(2Pu1/2)5/2, 3/2(2), 1/2(2)1477114610
    注: a)文献[34].
    DownLoad: CSV

    表 4  ICl+分子离子Ω态的光谱常数

    Table 4.  Spectroscopic constants of Ω states of ICl+ molecular ion.

    Ω态 Te/cm–1 D0/eV Be/cm–1 ωe/cm–1 Re Re处主要的Λ-S成分/%
    X2Π3/2 本文 0 2.31 0.1216 419 2.250 X2Π (98.1)
    实验a) 390
    实验b) 429 2.240±0.01
    理论c) 311 2.470
    X2Π1/2 本文 4501 1.75 0.1217 426 2.248 X2Π (97.7)
    实验d) 4680
    实验b) 4670±16 437 2.224±0.001
    理论c) 5424 314 2.460
    1/2(II) 本文 14808 0.50 0.0864 244 2.666 $ {1^4}{\Sigma ^ - } $ (79.7) 12Σ+ (12.5)
    1/2(III) 本文 17191 0.21 0.0656 78 3.063 $ {1^2}{\Sigma ^ - } $ (38.3) 14Σ+ (25.7)
    32Π (10.8) 12Π (5.8)
    3/2(II) 本文 15202 0.44 0.0831 156 1.518 $ {1^4}{\Sigma ^ - } $ (80.7) 14Σ+ (6.7)
    3/2(III) 本文 16795 0.21 0.0649 107 3.003 14Δ (58.3) 12Δ (34.8)
    注: a)文献[6]; b)文献[12]; c)文献[16]; d)文献[33].
    DownLoad: CSV

    表 5  ICl+分子离子跃迁的Frank-Condon因子

    Table 5.  Frank-Condon factors for the transition of ICl+ molecular ion.

    ν" = 0ν" = 1ν" = 2ν" = 3ν" = 4
    12Δ-Χ2Π
    ν' = 0本文1.888×10–178.612×10–161.956×10–142.919×10–133.193×10–12
    ν' = 1本文3.271×10–161.436×10–143.138×10–134.501×10–124.724×10–11
    ν' = 2本文2.958×10–151.252×10–132.635×10–123.635×10–113.662×10–10
    22Δ-Χ2Π
    ν' = 0本文4.361×10–275.255×10–252.996×10–231.085×10–212.796×10–20
    ν' = 1本文1.373×10–251.547×10–238.325×10–222.864×10–207.046×10–19
    ν' = 2本文2.081×10–242.230×10–221.149×10–203.797×10–198.989×10–18
    22Σ+-X2Π
    ν' = 0本文5.553×10–275.602×10–252.715×10–238.439×10–221.889×10–20
    ν' = 1本文2.304×10–252.065×10–239.017×10–222.559×10–205.290×10–19
    32Σ+-X2Π
    ν' = 0本文4.161×10–182.943×10–161.010×10–142.216×10–133.456×10–12
    ν' = 1本文4.071×10–172.814×10–159.431×10–142.019×10–123.067×10–11
    ν' = 2本文2.033×10–161.374×10–144.503×10–139.412×10–121.394×10–10
    1/2(II)-Χ2Π3/2
    ν' = 0本文1.226×10–93.102×10–83.870×10–73.155×10–61.872×10–5
    ν' = 1本文1.923×10–84.431×10–74.996×10–63.649×10–51.921×10–4
    ν' = 2本文1.679×10–73.501×10–63.541×10–52.296×10–41.060×10–3
    1/2(III)-Χ2Π3/2
    ν' = 0本文1.314×10–229.703×10–213.517×10–198.368×10–181.457×10–16
    ν' = 1本文5.532×10–213.879×10–191.346×10–173.083×10–165.184×10–15
    ν' = 2本文2.944×10–201.987×10–186.647×10–171.468×10–152.379×10–14
    3/2(III)-Χ2Π3/2
    ν' = 0本文1.106×10–225.929×10–211.542×10–192.607×10–183.216×10–17
    ν' = 1本文3.736×10–211.836×10–194.435×10–187.052×10–178.256×10–16
    DownLoad: CSV

    表 6  ICl+分子离子的辐射寿命

    Table 6.  Radiative lifetimes of ICl+ molecular ion.

    跃迁 辐射寿命/s
    ν' = 0 ν' = 1 ν' = 2
    12Δ-Χ2Π 本文 5.69×10–3 4.92×10–3 4.40×10–3
    22Δ-Χ2Π 本文 5.83×10–5 6.18×10–5 6.99×10–5
    22Σ+-X2Π 本文 2.91×10–5 3.28×10–5
    32Σ+-X2Π 本文 1.58×10–5 1.66×10–5 1.83×10–5
    1/2(II)-Χ2Π3/2 本文 3.73×10–2 3.42×10–2 3.09×10–2
    1/2(III)-Χ2Π3/2 本文 1.38×10–2 5.43×10–3 7.61×10–3
    3/2(III)-Χ2Π3/2 本文 3.28×10–2 2.06×10–2
    DownLoad: CSV
  • [1]

    Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239Google Scholar

    [2]

    Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375Google Scholar

    [3]

    Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087Google Scholar

    [4]

    Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598Google Scholar

    [5]

    Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81Google Scholar

    [6]

    Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242Google Scholar

    [7]

    Eland J H D 1979 J. Chem. Phys. 70 2926Google Scholar

    [8]

    Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J. Mass Spectro. Ion Phys. 7 209Google Scholar

    [9]

    Venkateswarlu P 1975 Can. J. Phys. 53 812Google Scholar

    [10]

    Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43Google Scholar

    [11]

    Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327Google Scholar

    [12]

    Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559Google Scholar

    [13]

    Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398Google Scholar

    [14]

    Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227Google Scholar

    [15]

    Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.Google Scholar

    [16]

    Balasubramanian K 1985 Chem. Phys. 95 225Google Scholar

    [17]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242Google Scholar

    [18]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [19]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [20]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [25]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [26]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [27]

    Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B 34 043101Google Scholar

    [28]

    刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101Google Scholar

    Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101Google Scholar

    [29]

    朱宇豪, 李瑞 2024 物理学报 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [30]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y 2024 Chin. Phys. B 33 053101Google Scholar

    [31]

    伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101Google Scholar

    Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101Google Scholar

    [32]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) p342

    [34]

    Moore C E 1971 Atomic Energy Levels (Washington (DC): National Bureau of Standards Publications

  • [1] FAN Jingtao, JIA Suotang. Dynamical response of spin frequency spectrum in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2025, 74(9): 096701. doi: 10.7498/aps.74.20241783
    [2] LIU Mingjie, TIAN Yali, WANG Yu, LI Xiaoxiao, HE Xiaohu, GONG Ting, SUN Xiaocong, GUO Guqing, QIU Xuanbing, LI Chuanliang. Calculation of $ {\mathrm{O}}^ -_2 $ spectroscopic constants with spin-orbit coupling. Acta Physica Sinica, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [3] Xing Wei, Li Sheng-Zhou, Sun Jin-Feng, Cao Xu, Zhu Zun-Lue, Li Wen-Tao, Li Yue-Yi, Bai Chun-Xu. Theoretical study on spectroscopic properties of 10 Λ-S and 26 Ω states for AlH molecule. Acta Physica Sinica, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [4] Ma Yun-E, Qiao Xin, Gao Rui, Liang Jun-Cheng, Zhang Ai-Xia, Xue Ju-Kui. Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates. Acta Physica Sinica, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [5] Zhou Yong-Xiang, Xue Xun. Electron vortices in spin-orbit coupling system. Acta Physica Sinica, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [6] Xing Wei, Li Sheng–Zhou, Sun Jin–Feng, Li Wen–Tao, Zhu Zun–Lüe, Liu Feng. Theoretical study on spectroscopic properties of 8 Λ-S and 23 Ω states for BH molecule. Acta Physica Sinica, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [7] Gao Feng, Zhang Hong, Zhang Chang-Zhe, Zhao Wen-Li, Meng Qing-Tian. Accurate theoretical study of potential energy curves, spectroscopic parameters, vibrational energy levels and spin-orbit coupling interaction on SiH+(X1Σ+) ion. Acta Physica Sinica, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [8] Li Ji, Liu Bin, Bai Jing, Wang Huan-Yu, He Tian-Chen. Ground state of spin-orbit coupled rotating ferromagnetic Bose-Einstein condensate in toroidal trap. Acta Physica Sinica, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [9] Hua Ya-Wen, Liu Yi-Liang, Wan Ming-Jie. Theoretical study on electronic structure and transition properties of excited states for SeH+ anion. Acta Physica Sinica, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [10] Xing Wei, Sun Jin-Feng, Shi De-Heng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties and predissociation mechanisms of electronic states of BF+ cation. Acta Physica Sinica, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [11] Zhao Shu-Tao, Liang Gui-Ying, Li Rui, Li Qi-Nan, Zhang Zhi-Guo, Yan Bing. Theoretical study on the electronic structure and transition properties of excited state of ZnH molecule. Acta Physica Sinica, 2017, 66(6): 063103. doi: 10.7498/aps.66.063103
    [12] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. icMRCI+Q study on spectroscopic properties of twelve -S states and twenty-three states of the CF+ cation. Acta Physica Sinica, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [13] Liu Hua-Bing, Yuan Li, Li Qiu-Mei, Chen Xiao-Hong, Du Quan, Jin Rong, Chen Xue-Lian, Wang Lin. Theoretical study of the spectra and radiative transition properties of 6Li32S. Acta Physica Sinica, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [14] Liu Hui, Xing Wei, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. Spectroscopic properties of BCl (X1Σ+, a3Π, A1Π) molecule. Acta Physica Sinica, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [15] Li Zhi, Wang Jian-Zhong. Barrier scattering properties in spin-orbit coupled Bose-Einstein condensate. Acta Physica Sinica, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [16] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [17] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] Zhang Li-Yan, Tian Ying, Zhang Jun-Jie, Hu Li-Li. Influence of LiF and AlF3 on optical, spectroscopic, crystallization and structrural properties of Tm3+ doped fluorophosphate glass. Acta Physica Sinica, 2010, 59(11): 8205-8211. doi: 10.7498/aps.59.8205
    [20] He Li-Ming, Yang Yue, Lu Hui. Core polarization and the calculation of lifetimes of highs series Rydberg state s of Na atom. Acta Physica Sinica, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
Metrics
  • Abstract views:  166
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2025
  • Accepted Date:  20 May 2025
  • Available Online:  04 June 2025
  • Published Online:  20 June 2025

/

返回文章
返回