Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules

Bai Ji-Yuan He Ze-Long Li Li Han Gui-Hua Zhang Bin-Lin Jiang Ping-Hui Fan Yu-Huan

Citation:

Electron transport through a two-terminal Aharonov-Bohm interferometer coupled with linear di-quantum dot molecules

Bai Ji-Yuan, He Ze-Long, Li Li, Han Gui-Hua, Zhang Bin-Lin, Jiang Ping-Hui, Fan Yu-Huan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A two-terminal Aharonov-Bohm (A-B) interferometer coupled with linear di-quantum dot molecules is presented. By employing Keldysh non-equilibrium Green's function technique, the conductance without introducing time-dependent external field and the average current with applying time-dependent external field are theoretically studied. In the absence of time-dependent external field, two identical linear diquantum dot molecules embedded respectively in the two arms of A-B interferometer lead to degeneracy energy levels. The central resonance peak at εd = 0 in the conductance spectrum splits into two resonance peaks as the inter-coupling strength of di-quamtum dot increases over a threshold. In the case that the two linear di-quantum dot molecules are different, three or four resonance peaks appear in the conductance spectrum. When tuning magnetic flux ψ= π, the destructive quantum interference of electron waves in the A-B interferometer takes place. The conversion between 0 and 1 for conductance is performed by switching on/off the magnetic flux, which suggests a new physical scheme of quantum switches. The effect of Rashba spin-orbit interaction on the conductance is discussed. The functionality of spin filter is suggested through adjusting the Rashba spin-orbit coupling strength and the external magnetic flux. When time-dependent external field is applied, the notable side-band effect appears in the average current curve. A series of resonance peaks is produced, with the peak-peak separation of ħω. Two main peaks become reduced as the amplitude of time-dependent external field increases, however, the sideband peaks grow gradually. This indicates that both the magnitude and the position of average current resonance peak are controllable by adjusting the amplitude of time-dependent external field. The sideband effect remains always in the average current curve no matter how much the frequency of time-dependent external field changes. But the increase in the frequency of external field leads to the growth of two main peaks at the bonding and anti-bonding energy respectively, and the decay of the corresponding sideband peaks as well. The conversion between the current peak and valley can be realized by tuning the frequency of time-dependent field. Moreover, the dependence of A-B effect of the average current on the magnetic flux is found. As the magnetic flux is ψ≠nπ, each peak in average current curves splits into two peaks. But under the condition of ψ=2nπ, the splitting phenomenon disappears. The spin-dependent average current shows effective controllability by tuning the magnetic flux and Rashba spin-orbit coupling. The results would be useful for gaining a physical insight into electron transport in the multi-quantum-dot molecules coupled A-B interferometer and for designing the quantum devices.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11447132), the 111 Project to Harbin Engineering University of the Ministry of Education of China (Grant No. B13015), the Key Laboratory Program of the Ministry of Education of China, and the Fundamental Research Funds for the Central Universities, China
    [1]

    Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335

    [2]

    Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301

    [3]

    Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389

    [4]

    Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343

    [5]

    Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301

    [6]

    Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485

    [7]

    Zhao H K, Wang J, Wang Q 2012 EPL 99 48005

    [8]

    Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934

    [9]

    Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 物理学报 57 2426]

    [10]

    Barański J, Domański T 2012 Phys. Rev. B 85 205451

    [11]

    He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 物理学报 63 227304]

    [12]

    Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310

    [13]

    Chi F, Zheng J 2008 Superlattices 43 375

    [14]

    Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185

    [15]

    Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849

    [16]

    Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302

    [17]

    Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109

    [18]

    An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078

    [19]

    Sokolovshi D 1988 Phys. Rev. B 37 4201

    [20]

    Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443

    [21]

    Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708

    [22]

    Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591

    [23]

    Chen K W, Chang C R 2008 Phys. Rev. B 78 235319

    [24]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [25]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528

    [26]

    Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487

  • [1]

    Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335

    [2]

    Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301

    [3]

    Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389

    [4]

    Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343

    [5]

    Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301

    [6]

    Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485

    [7]

    Zhao H K, Wang J, Wang Q 2012 EPL 99 48005

    [8]

    Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934

    [9]

    Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 物理学报 57 2426]

    [10]

    Barański J, Domański T 2012 Phys. Rev. B 85 205451

    [11]

    He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 物理学报 63 227304]

    [12]

    Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310

    [13]

    Chi F, Zheng J 2008 Superlattices 43 375

    [14]

    Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185

    [15]

    Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849

    [16]

    Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302

    [17]

    Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109

    [18]

    An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078

    [19]

    Sokolovshi D 1988 Phys. Rev. B 37 4201

    [20]

    Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443

    [21]

    Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708

    [22]

    Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591

    [23]

    Chen K W, Chang C R 2008 Phys. Rev. B 78 235319

    [24]

    Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310

    [25]

    Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528

    [26]

    Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487

  • [1] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [2] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [3] Chen Ya-Qi,  Xu Hua-Kai,  Tang Dong-Sheng,  Yu Fang,  Lei Le,  Ouyang Gang. Electrical transport properties and related mechanism of single SnO2 nanowire device. Acta Physica Sinica, 2018, 67(24): 246801. doi: 10.7498/aps.67.20181402
    [4] Wu Yu, Cai Shao-Hong, Deng Ming-Sen, Sun Guang-Yu, Liu Wen-Jiang. First-principle study on quantum thermal transport in a polythiophene chain. Acta Physica Sinica, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [5] Zu Feng-Xia, Zhang Pan-Pan, Xiong Lun, Yin Yong, Liu Min-Min, Gao Guo-Ying. Design and electronic transport properties of organic thiophene molecular rectifier with the graphene electrodes. Acta Physica Sinica, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [6] Li Rui. The mechanisms of electric-dipole spin resonance in quasi-one-dimensional semiconductor quantum dot. Acta Physica Sinica, 2015, 64(16): 167303. doi: 10.7498/aps.64.167303
    [7] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [8] An Xing-Tao, Diao Shu-Meng. Transport properties in a gate controlled silicene quantum wire. Acta Physica Sinica, 2014, 63(18): 187304. doi: 10.7498/aps.63.187304
    [9] Bai Ji-Yuan, He Ze-Long, Yang Shou-Bin. Charge and spin transport through parallel-coupled double-quantum-dot molecule A-B interferometer. Acta Physica Sinica, 2014, 63(1): 017303. doi: 10.7498/aps.63.017303
    [10] He Ze-Long, Bai Ji-Yuan, Li Peng, Lü Tian-Quan. Electron transport through T-shaped double quantum dot molecule Aharonov-Bohm interferometer. Acta Physica Sinica, 2014, 63(22): 227304. doi: 10.7498/aps.63.227304
    [11] An Xing-Tao, Mu Hui-Ying, Xian Li-Fen, Liu Jian-Jun. Spin-polarized transport through double quantum-dot-array. Acta Physica Sinica, 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [12] Li Jun, Liu Yu, Ping Jing, Ye Yin, Li Xin-Qi. Large-deviation analysis for counting statistics in double-dot Aharonov-Bohm interferometer. Acta Physica Sinica, 2012, 61(13): 137202. doi: 10.7498/aps.61.137202
    [13] Chen Xiang, Mi Xian-Wu. Studys of characteristics for pump-induced emission and anharmonic cavity-QED in quantum dot-cavity systems. Acta Physica Sinica, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [14] Ju Xin, Guo Jian-Hong. Influence of interdot-coupling on differentialconductance for a triple quantum dot. Acta Physica Sinica, 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [15] Qiu Ming, Zhang Zhen-Hua, Deng Xiao-Qing. Analysis on transport sensitivity for a carbon atomic wire attached with side groups. Acta Physica Sinica, 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [16] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [17] Zheng Xiao-Hong, Dai Zhen-Xiang, Wang Xian-Long, Zeng Zhi. Effects of B and N doping on spin polarized transport in graphene nanoribbons. Acta Physica Sinica, 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [18] Yin Yong-Qi, Li Hua, Ma Jia-Ning, He Ze-Long, Wang Xuan-Zhang. Quantum transport of multi-terminal coupled-quantum-dot-molecular bridge. Acta Physica Sinica, 2009, 58(6): 4162-4167. doi: 10.7498/aps.58.4162
    [19] Cai Cheng-Yu, Zhou Wang-Min. The strain distribution and equilibrium morphology of Ge/Si semiconductor quantum dot. Acta Physica Sinica, 2007, 56(8): 4841-4846. doi: 10.7498/aps.56.4841
    [20] Deng Yu-Xiang, Yan Xiao-Hong, Tang Na-Si. Electron transport through a quantum dot ring. Acta Physica Sinica, 2006, 55(4): 2027-2032. doi: 10.7498/aps.55.2027
Metrics
  • Abstract views:  5469
  • PDF Downloads:  153
  • Cited By: 0
Publishing process
  • Received Date:  16 April 2015
  • Accepted Date:  18 June 2015
  • Published Online:  05 October 2015

/

返回文章
返回