Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cyclic capacity fading of the power lithium ion battery based on a numerical modelling with dynamic responses

Jiang Yue-Hui Ai Liang Jia Ming Cheng Yun Du Shuang-Long Li Shu-Guo

Citation:

Cyclic capacity fading of the power lithium ion battery based on a numerical modelling with dynamic responses

Jiang Yue-Hui, Ai Liang, Jia Ming, Cheng Yun, Du Shuang-Long, Li Shu-Guo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • It is one of the important issues for electric vehicle to utilize power batteries which have long lifetime and excellent performance. For optimizing electrochemical performance and lifetime of the lithium ion battery, an electrochemical-thermal model based on dynamic response is developed by COMSOL MULTIPHYSICS. The modeling theory is the reaction mechanism of lithium iron phosphate battery which also includes a parasitic reaction occurring in the constant current and constant voltage charging process. The model consists of three parts: electro-chemical model, thermal model and capacity fade model. A series of temperature-dependent parameters and lithium ion concentration-dependent parameters relevant to the reaction rate and Li+ transport are employed in this model. Comparing with the results of the experimental test, the model shows high accuracy and reliability. The capacity losses and electrochemical behaviors of the battery in cyclic processes with different rates are investigated. The results show that when the battery is cycled at a rate of 1C, the capacity fading rate is about 6.35%, meanwhile the solid electrolyte interface membrane impedance of the battery is increased by 15.6 mm-2 after 800 time cycle. In the charge process, the side reaction rate within the anode shows a decreasing trend along the direction from the cooper current collector to separator, which is consistent with the lithium concentration in the anode. Besides, the effects of charge/discharge rate, negative active material particle radius and negative solid volume fraction on the battery cycle life are also discussed respectively. Compared with the fading rate of 3.31% after 400 time cycle with 1C rate, the capacity fading rates for 2C, 3C, 4C reach to 3.93%, 4.69% and 5.04% respectively. When the average particle radii of the anode are 2 m and 10 m, corresponding capacity fading rates are 2.89% and 3.87%, showing a difference of nearly 1%. The study for solid volume fraction demonstrates that the battery with a solid volume fraction varying in a range of [0.5, 0.6] will keep a longest battery life. These results show that the model has great potential to optimize the design of the battery.
      Corresponding author: Jia Ming, jiamingsunmoon@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51204211, 51222403), the Special Foundation for Industrial Upgrading Transformation and Strengthen the Foundation of Ministry of Industry and Information Technology, China (Grant No. 0714-EMTC02-5271/6), and the Foundation of Strategic Emerging Industrial Scientific Project Research, China (Grant No. 2015GK1045).
    [1]

    Yan J D 2014 Acta Aeronaut. Astronaut. Sin. 35 2767 (in Chinese) [闫金定 2014 航空学报 35 2767]

    [2]

    Etacheri V, Marom R, Ran E, Salitra G, Aurbach D 2011 Energy Environ. 4 3243

    [3]

    Arora P, White R E, Doyle M 1998 ChemInform 145 3647

    [4]

    Gang N, Haran B, Popov B N 2003 J. Power Sources 117 160

    [5]

    Vetter J, Novk P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Mehrens W, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [6]

    Laresgoiti I, Kbitz S, Ecker M, Du S 2015 J. Power Sources 300 112

    [7]

    Arora P, Popov B N, White R E 1998 J. Electrochem. Soc. 145 807

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [10]

    Groot J, Swierczynski M, Stan A I, Kr S K 2015 J. Power Sources 286 475

    [11]

    Ramadass P, Haran B, Gomadam P M, White R, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [12]

    Ploehn H J, Ramadass P, White R E 2004 J. Electrochem. Soc. 151 A456

    [13]

    Safari M, Morcrette M, Teyssot A, Delacourt C 2009 J. Electrochem. Soc. 156 A145

    [14]

    Honkura K, Takahashi K, Horiba T 2011 J. Power Sources 196 10141

    [15]

    Ecker M, Gerschler J B, Vogel J, Kbitz S, Hust F, Dechent P, Sauer D U 2012 J. Power Sources 215 248

    [16]

    Watanabe S, Kinoshita M, Nakura K 2014 J. Power Sources 247 412

    [17]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [18]

    Ye Y, Shi Y, Tay A A O 2012 J. Power Sources 217 509

    [19]

    Baek K W, Hong E S, Cha S W 2015 Int. J. Automot. Tech. 16 309

    [20]

    Newman J, Tiedemann W 1975 Aiche. J. 21 25

    [21]

    Doyle M, Fuller T F, Newman J S 1993 J. Electrochem. Soc. 140 1526

    [22]

    Doyle M, Newman J, Reimers J 1994 J. Power Sources 52 211

    [23]

    Doyle M, Newman J 1995 Electrochimica Acta 40 2191

    [24]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [25]

    Verbrugge M W, Koch B J 2003 J. Electrochem. Soc. 150 A374

    [26]

    Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y 2006 Nature Mater. 5 357

    [27]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [28]

    Gerver R E, Meyers J P 2011 Quatern Int. 158 A835

    [29]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

  • [1]

    Yan J D 2014 Acta Aeronaut. Astronaut. Sin. 35 2767 (in Chinese) [闫金定 2014 航空学报 35 2767]

    [2]

    Etacheri V, Marom R, Ran E, Salitra G, Aurbach D 2011 Energy Environ. 4 3243

    [3]

    Arora P, White R E, Doyle M 1998 ChemInform 145 3647

    [4]

    Gang N, Haran B, Popov B N 2003 J. Power Sources 117 160

    [5]

    Vetter J, Novk P, Wagner M R, Veit C, Moller K C, Besenhard J O, Winter M, Mehrens W, Vogler C, Hammouche A 2005 J. Power Sources 147 269

    [6]

    Laresgoiti I, Kbitz S, Ecker M, Du S 2015 J. Power Sources 300 112

    [7]

    Arora P, Popov B N, White R E 1998 J. Electrochem. Soc. 145 807

    [8]

    Tang Y W, Jia M, Li J, Lai Y Q, Cheng Y, Liu Y X 2014 J. Electrochem. Soc. 161 E3021

    [9]

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202 (in Chinese) [程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202]

    [10]

    Groot J, Swierczynski M, Stan A I, Kr S K 2015 J. Power Sources 286 475

    [11]

    Ramadass P, Haran B, Gomadam P M, White R, Popov B N 2004 J. Electrochem. Soc. 151 A196

    [12]

    Ploehn H J, Ramadass P, White R E 2004 J. Electrochem. Soc. 151 A456

    [13]

    Safari M, Morcrette M, Teyssot A, Delacourt C 2009 J. Electrochem. Soc. 156 A145

    [14]

    Honkura K, Takahashi K, Horiba T 2011 J. Power Sources 196 10141

    [15]

    Ecker M, Gerschler J B, Vogel J, Kbitz S, Hust F, Dechent P, Sauer D U 2012 J. Power Sources 215 248

    [16]

    Watanabe S, Kinoshita M, Nakura K 2014 J. Power Sources 247 412

    [17]

    Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J 2016 Chin. Phys. B 25 018212

    [18]

    Ye Y, Shi Y, Tay A A O 2012 J. Power Sources 217 509

    [19]

    Baek K W, Hong E S, Cha S W 2015 Int. J. Automot. Tech. 16 309

    [20]

    Newman J, Tiedemann W 1975 Aiche. J. 21 25

    [21]

    Doyle M, Fuller T F, Newman J S 1993 J. Electrochem. Soc. 140 1526

    [22]

    Doyle M, Newman J, Reimers J 1994 J. Power Sources 52 211

    [23]

    Doyle M, Newman J 1995 Electrochimica Acta 40 2191

    [24]

    Li J, Cheng Y, Jia M, Tang Y W, Lin Y, Zhang Z A, Liu Y X 2014 J. Power Sources 255 130

    [25]

    Verbrugge M W, Koch B J 2003 J. Electrochem. Soc. 150 A374

    [26]

    Yamada A, Koizumi H, Nishimura S, Sonoyama N, Kanno R, Yonemura M, Nakamura T, Kobayashi Y 2006 Nature Mater. 5 357

    [27]

    Srinivasan V, Wang C Y 2003 J. Electrochem. Soc. 150 A98

    [28]

    Gerver R E, Meyers J P 2011 Quatern Int. 158 A835

    [29]

    Doyle M, Newman J, Gozdz A S, Schmutz C N, Tarascon J M 1996 J. Electrochem. Soc. 143 1890

  • [1] Zhao Ning-Ning, Xiao Xin-Yu, Fan Feng-Xian, Su Ming-Xu. Ultrasonic attenuation model of mixed particle three-phase system based on Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [2] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [3] Du Qing-Xin, Sun Qi-Cheng, Ding Hong-Sheng, Zhang Guo-Hua, Fan Yan-Li, An Fei-Fei. Experimental study on bulk modulus and dissipation of dry and wet granular samples under vertical vibration. Acta Physica Sinica, 2022, 71(18): 184501. doi: 10.7498/aps.71.20220329
    [4] Wang Zhen, Du Yan-Jun, Ding Yan-Jun, Lü Jun-Fu, Peng Zhi-Min. Wide-range and calibration-free H2S volume fraction measurement based on combination of wavelength modulation and direct absorption spectroscopy with cavity ringdown spectroscopy. Acta Physica Sinica, 2022, 71(18): 184205. doi: 10.7498/aps.71.20220742
    [5] Wang Yu-Long, Zhang Xiao-Hong, Li Li-Li, Gao Jun-Guo, Guo Ning, Cheng Cheng. Localization and intensity calibration of partial discharge based on attenuation effect of ultrasonic sound pressure. Acta Physica Sinica, 2021, 70(9): 095209. doi: 10.7498/aps.70.20201727
    [6] Wang Fei, Huang Yi-Wang, Sun Qi-Hang. Effect of gas bubble volume fraction on low-frequency acoustic characteristic of sandy sediment. Acta Physica Sinica, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [7] Tang Yi-Wei, Ai Liang, Cheng Yun, Wang An-An, Li Shu-Guo, Jia Ming. Relaxation behavior simulation of power lithium-ion battery in high-rate charging-discharging process. Acta Physica Sinica, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [8] Zhang Wei, Hu Lin, Zhang Xing-Gang. Structural features of critical jammed state in bi-disperse granular systems. Acta Physica Sinica, 2016, 65(2): 024502. doi: 10.7498/aps.65.024502
    [9] Yang Wei-Guo, Zhong Cheng, Xia Hui. Study on diffusion of permeable particles in concentrated suspensions. Acta Physica Sinica, 2014, 63(21): 214705. doi: 10.7498/aps.63.214705
    [10] Wang Xue-Juan, Yuan Ping, Cen Jian-Yong, Zhang Ting-Long, Xue Si-Min, Zhao Jin-Cui, Xu He. Study on the radius and energy transmission properties of lightning discharge channel by the spectra. Acta Physica Sinica, 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [11] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [12] Wang Lei, Wang Nan, Ji Lin, Yao Wen-Jing. Lamellarrod transition mechanism under high growth velocity condition. Acta Physica Sinica, 2013, 62(21): 216801. doi: 10.7498/aps.62.216801
    [13] Qian Zu-Wen. Viscosity coefficient in granular medium. Acta Physica Sinica, 2012, 61(13): 134301. doi: 10.7498/aps.61.134301
    [14] Xia Ji-Hong, Liu Hui, Yan Long, Liu Chang-Song, Wang Ping-Jian. The dynamical analysis of energy decay in one-dimensionalcomposite granular chain. Acta Physica Sinica, 2011, 60(1): 014501. doi: 10.7498/aps.60.014501
    [15] Kong Wei-Shu, Hu Lin, Zhang Xing-Gang, Yue Guo-Lian. Experimental studdy on relation between volume fraction of sandpiles and flow rate of forming sandpiles. Acta Physica Sinica, 2010, 59(1): 411-416. doi: 10.7498/aps.59.411
    [16] Yang Juan, Lai Xiao-Ming, Peng Gang, Bian Bao-Min, Lu Jian. The fractal measurement of aerosol equivalent volume based on counting signal. Acta Physica Sinica, 2009, 58(5): 3008-3013. doi: 10.7498/aps.58.3008
    [17] Zhang Hang, Guo Yun-Bo, Chen Xiao, Wang Duan, Cheng Peng-Jun. The distribution of a granular pile under impact. Acta Physica Sinica, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [18] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] QIAN ZU-WEN. CONCENTRATED SUSPENSION THEORY OF SOUND ATTENUATION IN GRANULAR MEDIA AND THE APPLICATIONS. Acta Physica Sinica, 1988, 37(1): 64-70. doi: 10.7498/aps.37.64
    [20] FEI QING-YU, HUANG BING-ZHONG. THE TOTAL VOLUME FRACTION OF VOIDS OF RF SPUTTERED AMORPHOUS SILICON. Acta Physica Sinica, 1985, 34(11): 1413-1421. doi: 10.7498/aps.34.1413
Metrics
  • Abstract views:  7356
  • PDF Downloads:  768
  • Cited By: 0
Publishing process
  • Received Date:  10 December 2016
  • Accepted Date:  10 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回