-
The[Ca24Al28O64]4+:4e- (C12A7:e-) electride composed of densely packed, subnanometer-sized cages. This unique structure makes it possess distinctive applications in fields of electronic emission, superconductor, electrochemical reaction. In this paper, we explore a new method to prepare the bulk of C12A7:e- electride. The following areare systematically studied in this work. 1) the condition of preparing bulk of C12A7:e- electride by solid reaction combining spark plasma sintering and reduction with Ti particles at high temperature, CaCO3 and Al2O3 powders are used as raw materials; 2) the first principle calculations of band structure and density of states of the C12A7:e- electride; 3) the analysis of the electrical transport properties of the C12A7:e- electride. The bulk of C12A7:e- electride is successfully prepared by this method, so the results show that the bulk of C12A7:e- electrode with the electron concentration 1018-1020 cm-3 is synthesized at 1100 ℃ and a vacuum pressure of 10-5 Pa for 10-30 h. In the process of Ti reduction, Ti particles become evaporated and deposit on the surface of C12A7, the free O2- atom in the cages diffuse to the sample surface, the Ti vapor reacts with the O2-, forming a loose TiO_x layer. In order to maintain electrical neutrality, the electrons of the free O2- atom leave from the cages, forming the C12A7:e- electride. In addition, the loose TiO_x layer also provides a channel for the diffusion of the O2- atoms in the cage, ensuring the continuation of the reduction reaction. The calculated band structure and density of states of the bulk C12A7:e- electride show that when electrons replace the O2- atoms in the cage, the Fermi level of C12A7:e- crosses over the cage conduction band (CCB). Thus the free movement of the electron is the main reason for the insulator C12A7 to convert into conductor C12A7:e-. At the same time the electrons near the Fermi level in the cages are easy to jump from the CCB to the frame conduction band (FCB). Combination of the above experimental results suggests that the electrons in cages are easier to escape to vacuum under the action of electric field or thermal field, which is the main reason for low work function of C12A7:e-. This way provides an new approach to the realization of the insulator C12A7 converting into C12A7:e- electride. And the C12A7:e- is a good electronic emission material due to low work function, low working temperature, and highly anti-poisoning ability, so this method of preparing bulk C12A7:e- electride provides a good new way to synthesize a new electronic emission material.
[1] Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106
[2] Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138
[3] Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602
[4] Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365
[5] Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410
[6] Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1
[7] Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239
[8] Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329
[9] Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270
[10] Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52
[11] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934
[12] Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]
[13] Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294
[14] Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938
[15] Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685
[16] Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626
[17] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75
[18] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80
[19] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[20] Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[21] Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]
[22] Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942
-
[1] Kerrour W, Kabir A, Schmerber G, Boudjema B, Zerkout S, Bouabellou A, Sedrati C 2016 J. Mater. Sci.:Mater. Electron. 27 10106
[2] Kim S W, Matsuishi S, Nomura T, Kubota Y, Takata M, Hayashi K, Kamiya T, Hirano M, Hosono H 2007 Nano Lett. 7 1138
[3] Kurashige K, Toda Y, Matstuishi S, Hayashi K, Hirano M, Hosono H 2006 Cryst. Growth Des. 6 1602
[4] Kiyanagi R, Richardson J W, Sakamoto N, Yoshimura M 2008 Acta Cryst. 179 2365
[5] Watanabe S, Watanabe T, Ito K, Miyakawa N, Ito S, Hosono H, Mikoshiba S 2011 Sci. Technol. Adv. Mat. 12 034410
[6] Pan R K, Feng S, Tao H Z 2017 Mat. Sci. Eng. 67 1
[7] Yang S, Kondo J N, Hayashi K, Hirano M, Domen K, Hosono H 2004 Appl. Catal. A:Gen. 277 239
[8] Park J K, Shimomura T, Yamanaka M, Watauchi S, Kishio K, Tanaka I 2005 Cryst. Res. Technol. 40 329
[9] Miyakawa M, Kim S W, Hirano M, Kohama Y, Kawaji H, Atake T, Ikegami H, Kono K, Hosono H 2007 J. Am. Chem. Soc. 129 7270
[10] Li J, Yin B, Fuchigami T, Inagi S, Hosono H, Ito S 2012 Electrochem. Commun. 17 52
[11] Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H 2012 Nat. Chem. 4 934
[12] Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, de Visser A 2017 Acta Phys. Sin. 66 186102 (in Chinese)[包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102]
[13] Kim S W, Hayashi K, Hirano M, Hosono H, Tanaka I 2006 J. Am. Ceram. Soc. 89 294
[14] Kim S W, Toda Y, Hayashi K, Hirano M, Hosono H 2006 Chem. Mater. 18 1938
[15] Toda Y, Matsuishi S, Hayashi K, Ueda K, Kamiya T, Hirano M, Hosono H 2004 Adv. Mater. 16 685
[16] Satoru M, Yoshitake T, Masashi M, Katsuro H, Toshio K, Masahiro H, Lsao T, Hideo H 2003 Science 301 626
[17] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2015 Eur. Phys. J. B 88 75
[18] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Eur. Phys. J. B 89 80
[19] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[20] Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[21] Jiang P G, Wang Z B, Yan Y B, Liu W J 2017 Acta Phys. Sin. 66 246801 (in Chinese)[姜国平, 汪正兵, 闫永播, 刘文杰 2017 物理学报 66 246801]
[22] Sushko P V, Shluger A L, Hirano M, Hosono H 2007 J. Am. Chem. Soc. 129 942
Catalog
Metrics
- Abstract views: 7558
- PDF Downloads: 186
- Cited By: 0