Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pulsar time delay estimation method based on two-level compressed sensing

Kang Zhi-Wei Wu Chun-Yan Liu Jin Ma Xin Gui Ming-Zhen

Citation:

Pulsar time delay estimation method based on two-level compressed sensing

Kang Zhi-Wei, Wu Chun-Yan, Liu Jin, Ma Xin, Gui Ming-Zhen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the traditional compressed sensing algorithms, the precision of the time delay estimation is closely related to the number of atoms in the dictionary. The bigger the atom number, the smaller the atomic interval becomes, thus the higher the accuracy of the time delay estimation will be. However, the bigger atom number leads to a higher calculation load. Considering the limited calculation capacity of on-board computer, in order to fast obtain high-accuracy time delay estimation value of the integrated pulsar profile of pulsar in the X-ray pulsar-based navigation, we propose a time delay estimation method based on two-level compression sensing. Compressed sensing mainly includes three parts:the dictionary, the measurement matrix, and the recovery algorithm. Among them, the dictionary size is one of the most important factors that affect the estimation accuracy of the compressed sensing. Aiming to solve the problem of the greater computational load with the increase of the atom number in the dictionary of compressed sensing while improving the accuracy of estimation, we combine the rough estimation with the precision estimation as a two-level dictionary. In the first level, the global phase estimation of the low-dimensional integrated pulsar profile is carried out by making use of the feature of the large atomic interval and the small atomic amount of the rough estimation dictionary. Specifically, first, construct a coarse estimation dictionary according to the low-dimensional standard pulsar profile. Then make dimension reduction sampling on the low-dimensional integrated pulsar profile by the rough estimation measurement matrix based on low-dimensional Hadamard matrix. Finally, use an orthogonal matching pursuit method to obtain the predictive estimation of delay value. In the second level, by taking advantage of the small atomic intervals and numbers of the precise estimation dictionary which are suitable for local estimation, the exact time delay estimation of the high dimensional integrated pulsar profile is performed. Specifically, the original position is first corrected by using the predictive estimation of time delay value, that is, shifting the initial high-dimensional integrated pulsar profile as the input signal of the second level. Then the precise estimation dictionary is constructed according to the partial signal of the length of the high dimension standard pulse profile, using the precise estimation measurement matrix sampling on high-dimensional integrated pulsar profile to obtain measurement value. Finally, the optimal matching position is obtained through the recovery algorithm, which is then combined with the predictive estimation of delay value to calculate the prcis time delay estimation value. Theoretical analysis and experimental results show that the quantity of data in the two level dictionary is two orders of magnitude smaller than in the traditional dictionary. The proposed method reduces the computational complexity greatly compared with traditional compression sensing method in the same time delay estimation accuracy. Therefore, this method has the advantages of high precision and small calculation load.
      Corresponding author: Kang Zhi-Wei, jt_zwkang@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61501336, 61772187).
    [1]

    Hanson J E 1996 Ph. D. Dissertation (Stanford: Stanford University)

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Liu J, Wu J, Xiong L, Fang J C, Liu G 2017 Chin. J. Electron 6 1325

    [4]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [5]

    Tran N D, Renaux A, Boyer R, Marcos S 2014 IEEE Trans. Aeros. Elec. Sys. 50 786

    [6]

    Kang Z W, He X, Liu J 2016 Optik 127 5050

    [7]

    Zhang H, Xu L P, Xie Q, Luo N 2011 Acta Phys. Sin. 60 049701 (in Chinese) [张华, 许录平, 谢强, 罗楠 2011 物理学报 60 049701]

    [8]

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701 (in Chinese) [方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 物理学报 65 119701]

    [9]

    Liu J, Fang J C, Wu J, Kang Z W, Ning X L 2014 IET Radar Sonar Navig 8 1154

    [10]

    Emadzadeh A A, Speyer J L 2011 IEEE Trans. Aeros. Elec. Sys. 47 2317

    [11]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [12]

    Li J X, Ke X Z 2010 Acta Astronom. Sin. 51 263 (in Chinese) [李建勋, 柯熙政 2010 天文学报 51 263]

    [13]

    Do T T, Gan L, Nguyen N H, Tran T D 2012 IEEE Trans. Sig. Proc. 60 139

    [14]

    Su Z, Xu L P, Gan W 2011 Sci. Sin.: Phys. Mech. Astron. 41 681 (in Chinese) [苏哲, 许录平, 甘伟 2011 中国科学: 物理学 力学 天文学 41 681]

    [15]

    Li S L, Liu K, Xiao L L 2014 Optik 125 1875

    [16]

    Shen L R, Li X P, Sun H F, Fang H Y, Xue M F 2016 Optik 127 4379

    [17]

    Golshan A R, Sheikh S I 2007 Annual Meeting of Institute of Navigation Cambrige, MA, USA, April 23-25, 2007 p413

    [18]

    Shi G, Lin J, Chen X Y, Qi F, Liu D H, Zhang L 2008 IEEE Trans. Sig. Proc. 55 379

    [19]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Sig. Proc. 53 4655

    [20]

    RXTE https://heasarc nasa gov/docs/archive html [2017-5-24]

  • [1]

    Hanson J E 1996 Ph. D. Dissertation (Stanford: Stanford University)

    [2]

    Sheikh S I 2005 Ph. D. Dissertation (Maryland: University of Maryland)

    [3]

    Liu J, Wu J, Xiong L, Fang J C, Liu G 2017 Chin. J. Electron 6 1325

    [4]

    Taylor J H 1992 Philos. T. R. Soc. A 341 117

    [5]

    Tran N D, Renaux A, Boyer R, Marcos S 2014 IEEE Trans. Aeros. Elec. Sys. 50 786

    [6]

    Kang Z W, He X, Liu J 2016 Optik 127 5050

    [7]

    Zhang H, Xu L P, Xie Q, Luo N 2011 Acta Phys. Sin. 60 049701 (in Chinese) [张华, 许录平, 谢强, 罗楠 2011 物理学报 60 049701]

    [8]

    Fang H Y, Liu B, Li X P, Sun H F, Xue M F, Shen L R, Zhu J P 2016 Acta Phys. Sin. 65 119701 (in Chinese) [方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏 2016 物理学报 65 119701]

    [9]

    Liu J, Fang J C, Wu J, Kang Z W, Ning X L 2014 IET Radar Sonar Navig 8 1154

    [10]

    Emadzadeh A A, Speyer J L 2011 IEEE Trans. Aeros. Elec. Sys. 47 2317

    [11]

    Emadzadeh A A, Speyer J L 2010 IEEE Trans. Sig. Proc. 58 4484

    [12]

    Li J X, Ke X Z 2010 Acta Astronom. Sin. 51 263 (in Chinese) [李建勋, 柯熙政 2010 天文学报 51 263]

    [13]

    Do T T, Gan L, Nguyen N H, Tran T D 2012 IEEE Trans. Sig. Proc. 60 139

    [14]

    Su Z, Xu L P, Gan W 2011 Sci. Sin.: Phys. Mech. Astron. 41 681 (in Chinese) [苏哲, 许录平, 甘伟 2011 中国科学: 物理学 力学 天文学 41 681]

    [15]

    Li S L, Liu K, Xiao L L 2014 Optik 125 1875

    [16]

    Shen L R, Li X P, Sun H F, Fang H Y, Xue M F 2016 Optik 127 4379

    [17]

    Golshan A R, Sheikh S I 2007 Annual Meeting of Institute of Navigation Cambrige, MA, USA, April 23-25, 2007 p413

    [18]

    Shi G, Lin J, Chen X Y, Qi F, Liu D H, Zhang L 2008 IEEE Trans. Sig. Proc. 55 379

    [19]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Sig. Proc. 53 4655

    [20]

    RXTE https://heasarc nasa gov/docs/archive html [2017-5-24]

  • [1] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] Cao Hai-Yan, Ye Zhen-Yu. Theoretical analysis and algorithm design of optimized pilot for downlink channel estimation in massive MIMO systems based on compressed sensing. Acta Physica Sinica, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [3] Theoretical analysis and algorithm Design of Optimized pilot for downlink channel estimation in massive MIMO systems based on compressed sensing. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211504
    [4] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] Zhou Qing-Yong, Wei Zi-Qing, Jiang Kun, Deng Lou-Lou, Liu Si-Wei, Ji Jian-Feng, Ren Hong-Fei, Wang Yi-Di, Ma Gao-Feng. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar. Acta Physica Sinica, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [6] Leng Xue-Dong, Wang Da-Ming, Ba Bin, Wang Jian-Hui. A quasi-cyclic compressed sensing delay estimation algorithm based on progressive edge-growth. Acta Physica Sinica, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [7] Shi Jie, Yang De-Sen, Shi Sheng-Guo, Hu Bo, Zhu Zhong-Rui. Compressive focused beamforming based on vector sensor array. Acta Physica Sinica, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] Leng Xue-Dong, Ba Bin, Lu Zhi-Yu, Wang Da-Ming. Sparse reconstruction time delay estimation algorithm based on backtracking filter. Acta Physica Sinica, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [10] Li Guang-Ming, Lü Shan-Xiang. Chaotic signal denoising in a compressed sensing perspective. Acta Physica Sinica, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] Zhang Xin-Peng, Hu Niao-Qing, Cheng Zhe, Zhong Hua. Vibration data recovery based on compressed sensing. Acta Physica Sinica, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [12] Wang Zhe, Wang Bing-Zhong. Application of compressed sensing theory in the method of moments. Acta Physica Sinica, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [13] Li Long-Zhen, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Zhai Guang-Jie. Super-resolution ghost imaging via compressed sensing. Acta Physica Sinica, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] Li Jing, Zhao Yong-Jun, Li Dong-Hai. Time delay estimation using Markov Chain Monte Carlo method. Acta Physica Sinica, 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [15] Ma Yuan, Lü Qun-Bo, Liu Yang-Yang, Qian Lu-Lu, Pei Lin-Lin. Image sparsity evaluation based on principle component analysis. Acta Physica Sinica, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [16] Liang Guo-Long, Ma Wei, Fan Zhan, Wang Yi-Lin. A high resolution robust localization approach of high speed target based on vector sonar. Acta Physica Sinica, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [17] Ning Fang-Li, He Bi-Jing, Wei Juan. An algorithm for image reconstruction based on lp norm. Acta Physica Sinica, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] Feng Bing-Chen, Fang Sheng, Zhang Li-Guo, Li Hong, Tong Jie-Juan, Li Wen-Qian. A non-linear analysis for gamma-ray spectrum based on compressed sensing. Acta Physica Sinica, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] Bai Xu, Li Yong-Qiang, Zhao Sheng-Mei. Differential compressive correlated imaging. Acta Physica Sinica, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] Su Zhe, Xu Lu-Ping, Wang Ting. X-ray pulsar-based navigation semi-physical simulation experiment system. Acta Physica Sinica, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
Metrics
  • Abstract views:  6921
  • PDF Downloads:  140
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2017
  • Accepted Date:  05 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回