Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique

Jia Meng-Yuan Zhao Gang Zhou Yue-Ting Liu Jian-Xin Guo Song-Jie Wu Yong-Qian Ma Wei-Guang Zhang Lei Dong Lei Yin Wang-Bao Xiao Lian-Tuan Jia Suo-Tang

Citation:

Frequency locking of fiber laser to 1530.58 nm NH3 sub-Doppler saturation spectrum based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy technique

Jia Meng-Yuan, Zhao Gang, Zhou Yue-Ting, Liu Jian-Xin, Guo Song-Jie, Wu Yong-Qian, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful tool for trace gas detection, which is based on the combination of frequency modulation spectroscopy (FMS) for reduction of 1/f noise, especially residual intensity noise, and cavity enhanced absorption spectroscopy (CEAS) for prolonging the interaction length between the laser and the targeted gas. Because of the locking of modulation frequency in FMS to the free spectral range (FSR) of the cavity, NICE-OHMS is immune to the frequency-to-amplitude noise, which is a main limitation to CEAS. Moreover, due to the building of high power inside the cavity, NICE-OHMS can easily saturate the molecular absorption thus obtain sub-Doppler spectroscopy, which possess a high resolution and odd symmetry, and thus can act as a frequency discriminator for the locking of the laser frequency to the transition center. In this paper, a fiber laser based NICE-OHMS system is established and the laser frequency is locked to the sub-Doppler absorption line of NH3 by sub-Doppler NICE-OHMS. To avoid the complex design of high-Q-factor bandpass filter at radio frequency, the frequency νpdh, used for Pound-Drever-Hall (PDH) locking, is generated by the beat frequencies νfsr and νdvb, which are used for NICE-OHMS signal and DeVoe-Brewer (DVB) locking, respectively. The performances of PDH and DVB locking are analysed by the frequency distribution deduced from the error signals, which result in frequency deviations of 4.3 kHz and 0.38 kHz, respectively. Then, the CEAS signal and NICE-OHMS signal in the dispersive phase for the measurement of NH3 at 1.53 μm under 70 mTorr are obtained, which show signal-to-noise ratios of 3.3 dB and 45.5 dB, respectively. Due to the high power built in the cavity, the sub-Doppler structure in the NICE-OHMS signal is obtained in the center of the absorption tansition with a satruation degree of 0.22, which is evaluated by the amplitude ratio between sub-Doppler and Doppler-broadened signals. The linewidth (full width at half maximum) of the sub-Doppler signal of 2.05 MHz is obtained, which is calibrated by the time interval between carrier and sideband. The free-running drift of the laser frequency is estimated by the NICE-OHMS signal and results in 50 MHz over 3 h. While, with locking, the relative deviation of the laser frequency is reduced to 16.3 kHz. In order to evaluate the long term stability of the system, the frequency deviation over 3 h is measured. The Allen deviation analysis shows that the white noise is the main noise of the system in the integration time shorter than 10 s. And the frequency stability can reach to 1.6×10-12 in an integration time of 136 s.
      Corresponding author: Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the National Natural Science Foundation of China (Grant Nos. 11434007, 61475093, 61378047, 61675122, 61622503, 61575113, 11704236), the Shanxi Natural Science Foundation, China (Grant No. 2015021105), the Shanxi Scholarship Council of China (Grant No. 2017-016), and the Key Discipline Construction Projects of Shanxi.
    [1]

    Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311

    [2]

    Hall John L 2006 Rev. Mod. Phys. 78 1279

    [3]

    Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001

    [4]

    Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204

    [5]

    Kazovsky L G 1986 J. Lightwave Technol. 4 182

    [6]

    Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105

    [7]

    Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209

    [8]

    Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680

    [9]

    Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048

    [10]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [11]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [12]

    Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000

    [13]

    Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255

    [14]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [15]

    Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178

    [16]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [17]

    DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827

    [18]

    Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109

    [19]

    Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [20]

    van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713

    [21]

    Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950

    [22]

    Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457

    [23]

    Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439

    [24]

    Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392

    [25]

    Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [26]

    Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189

    [27]

    Chen T L, Liu Y W 2017 Opt. Lett. 42 2447

    [28]

    Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217

    [29]

    Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166

    [30]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [31]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938

    [32]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 物理学报 65 128701]

    [33]

    Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]

  • [1]

    Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311

    [2]

    Hall John L 2006 Rev. Mod. Phys. 78 1279

    [3]

    Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001

    [4]

    Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204

    [5]

    Kazovsky L G 1986 J. Lightwave Technol. 4 182

    [6]

    Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105

    [7]

    Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209

    [8]

    Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680

    [9]

    Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048

    [10]

    Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497

    [11]

    Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641

    [12]

    Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000

    [13]

    Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255

    [14]

    Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247

    [15]

    Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178

    [16]

    Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 物理学报 61 164206]

    [17]

    DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827

    [18]

    Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109

    [19]

    Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [20]

    van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713

    [21]

    Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950

    [22]

    Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457

    [23]

    Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439

    [24]

    Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392

    [25]

    Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198

    [26]

    Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189

    [27]

    Chen T L, Liu Y W 2017 Opt. Lett. 42 2447

    [28]

    Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217

    [29]

    Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166

    [30]

    Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139

    [31]

    Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938

    [32]

    Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 物理学报 65 128701]

    [33]

    Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]

  • [1] Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao. Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors. Acta Physica Sinica, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] Yang Ya-Tao, Zou Yuan, Zeng Qiong, Song Yu-Feng, Wang Ke, Wang Zhen-Hong. Mode-locked fiber laser with coexistence of m ultiple solitons and noise-like pulses. Acta Physica Sinica, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [3] Yuan Hao, Zhu Fang-Xiang, Wang Jin-Tao, Yang Rong, Wang Nan, Yu Yang, Yan Pei-Guang, Guo Jin-Chuan. Generation of ultra-fast pulse based on bismuth saturable absorber. Acta Physica Sinica, 2020, 69(9): 094203. doi: 10.7498/aps.69.20191995
    [4] Zhang Qian, Jin Xin-Xin, Zhang Meng, Zheng Zheng. Two-dimensional material as a saturable absorber for mid-infrared ultrafast fiber laser. Acta Physica Sinica, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [5] Chen Yi-Sha, Liao Lei, Li Jin-Yan. Experimental study on influence of fiber numerical aperture on mode instability threshold of ytterbium fiber oscillator. Acta Physica Sinica, 2019, 68(11): 114206. doi: 10.7498/aps.68.20182257
    [6] Chen Kai, Zhu Lian-Qing, Niu Hai-Sha, Meng Kuo, Dong Ming-Li. Stress measurement based on 1556 nm fiber laser frequency splitting effect. Acta Physica Sinica, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [7] Rao Yun-Jiang. Recent progress in ultra-long distributed fiber-optic sensing. Acta Physica Sinica, 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [8] Zhang Xi, Liu Hui, Jiang Kun-Liang, Wang Jin-Qi, Xiong Zhuan-Xian, He Ling-Xiang, Lü Bao-Long. Transfer cavity scheme for stabilization of lattice laser in ytterbium lattice clock. Acta Physica Sinica, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [9] Ruan Jun, Wang Ye-Bing, Chang Hong, Jiang Hai-Feng, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Progress towards primary frequency standard. Acta Physica Sinica, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [10] Zhang Li-Meng, Hu Ming-Lie, Gu Cheng-Lin, Fan Jin-Tao, Wang Qing-Yue. High power red to mid-infrared laser source from intracavity sum frequency optical parametric oscillator pumped by femtosecond fiber laser. Acta Physica Sinica, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [11] Xiong Shui-Dong, Xu Pan, Ma Ming-Xiang, Hu Zheng-Liang, Hu Yong-Ming. Experimental study on mode hopping triggered by transient characteristics of saturable absorber gratings in Er-doped fiber ring lasers. Acta Physica Sinica, 2014, 63(13): 134206. doi: 10.7498/aps.63.134206
    [12] Feng De-Jun, Hang Wen-Yu, Jiang Shou-Zhen, Ji Wei, Jia Dong-Fang. Few-layer graphene membrane as an ultrafast mode-locker in erbium-doped fiber laser. Acta Physica Sinica, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [13] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [14] Yang Wei, Liu Ying, Xiao Li-Feng, Yang Zhao-Xiang, Pan Jian-Xuan. Acousto-optic wavelength-tunable erbium-doped fiber ring laser. Acta Physica Sinica, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [15] Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He. Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers. Acta Physica Sinica, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [16] Huang Lin, Dai Zhi-Yong, Liu Yong-Zhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates. Acta Physica Sinica, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [17] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [18] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [19] Xu Ou, Lu Shao-Hua, Jian Shui-Sheng. Theoretical investigation on the characteristics of transmission spectra of the two-cavity Fabry-Perot structure based on fiber gratings for single-frequency fiber laser. Acta Physica Sinica, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [20] Lü Chang-Gui, Cui Yi-Ping, Wang Zhu-Yuan, Yun Bin-Feng. A study on the longitudinal mode behavior of Fabry-Perot cavity composed of fiber Bragg grating. Acta Physica Sinica, 2004, 53(1): 145-150. doi: 10.7498/aps.53.145
Metrics
  • Abstract views:  6928
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  28 December 2017
  • Accepted Date:  16 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回