Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on Ti K shell ionization cross sections induced by 8-9.5 keV positrons

Qian Yu-Rui Wu Ying Yang Xia-Tong Chen Qiu-Xiang You Jun-Dong Wang Bao-Yi Kuang Peng Zhang Peng

Citation:

Experimental study on Ti K shell ionization cross sections induced by 8-9.5 keV positrons

Qian Yu-Rui, Wu Ying, Yang Xia-Tong, Chen Qiu-Xiang, You Jun-Dong, Wang Bao-Yi, Kuang Peng, Zhang Peng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Due to lack of experimental data of the inner shell ionization cross sections induced by low-energy positron, advanced theoretical models developed in recent years cannot be correctly evaluated, and the application of slow positron beam technique is greatly limited. Here we present the method of obtaining reliable experiment data of atomic inner-shell ionization cross section by positron impact. In this work, the slow positron beam device is used to generate 8-9.5 keV positron beams impacting on a pure thick Ti target, and the silicon drift detector (SDD) is adopted to collect the X-ray spectra produced by positrons impacting on thick Ti target, and the incident positron numbers are obtained by applying an HPGe detector to on-line collect annihilation photons. Then the experimental characteristic X-ray yields of Ti K shell impacted by 8-9.5 keV positron could be acquired. Meantime, the simulated characteristic X-ray yields are acquired by the PENELOPE program simulating the experiments. In the comparison between the experimental yields and the simulated yields based on two sets of different inner shell ionization cross section database in the PENELOPE code, i.e. the optical data model (ODM) and the distorted-wave Born approximation model (DWBA), there is a large difference between the simulated data from the ODM theoretical model and the experimental values, while the simulated yields from the DWBA theoretical model are in good agreement with the experimental results. Accordingly, a correction factor is introduced to modify the DWBA theoretical model database which is used in the PENELOPE, and then the experimental process is re-simulated. When the simulated yields and the experimental yields are in the highest consistence, the reliable Ti K shell ionization cross sections impacted by 8-9.5 keV positron could be obtained. The biggest advantage of using this method to obtain atomic inner-shell ionization cross section impacted by positron is that the effects of the multiple scattering of incident positrons in the thick target, from the bremsstrahlung and annihilation photons, and other secondary particles on the experimental characteristic X-rays do not need calculating (the calculation method that has been developed previously cannot give the more correct result about the contribution of the multiple scattering of incident positrons, from the bremsstrahlung and annihilation photons, and other secondary particles to characteristic X-rays).
      Corresponding author: Wu Ying, w_y@ncepu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11275071), the North China Electric Power University Undergraduate Innovation and Entrepreneurship Training Program, China (Grant No. 2016-153), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018ZD10).
    [1]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702

    [2]

    Wang J J, Gong J, Gong Z L, Yan X L, Wang B 2009 The second National Symposium on Nuclear Technology and Applied Research Mianyang, China, May 1, 2009 p331 (in Chinese) [王君君, 龚静, 宫振丽, 闫晓丽, 王波 2009 第二届全国核技术及应用研究学术研讨会 中国绵阳, 2009年5月1日, 第331页]

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102

    [4]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006

    [5]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71

    [6]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 Europhys. Lett. 118 13001

    [7]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [8]

    Nagashima Y, Saito F, Itoh Y 2004 Phys. Rev. Lett. 92 223201

    [9]

    Nagashima Y, Shigeta W, Hyodo T 2007 Radiat. Phys. Chem. 76 465

    [10]

    Tian L X, Liu M T, Zhu J J, An Z, Wang B Y, Qin X B 2012 Plasma Sci. Technol. 14 434

    [11]

    Hippler R 1990 Phys. Lett. A 144 81

    [12]

    Luo S, Joy D C 1991 Microbeam Analysis (Vol. 1) (San Francisco:San Francisco Press) pp67-68

    [13]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [14]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710

    [15]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711.

    [16]

    Salvat F, Fernández-Vaea J M, Sempau J 2005 PENELOPE-2005, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Vol. 1) (Issy-les-Moulineau:OECD/NEA Data) ppix-xii

    [17]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710

    [18]

    Cullen D E, Hubbell J H, Kissel L 1997 Report UCRL-0400 6 5

    [19]

    Ribberfors R 1983 Phys. Rev. A 27 3061

    [20]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. Phys. Res. B 267 3495

    [21]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304

    [22]

    Sempau J, Fernández-Vaea J M, Acosta E, Salvat F 2003 Nucl. Instr. Meth. Phys. Res. B 207 107

    [23]

    Salvat F, Llovet X, Fernández-Vaea J M, Sempau J 2006 Microchim. Acta 155 67

    [24]

    Mayol R, Salvat F 1990 Phys. B 23 2117

    [25]

    He C Q, Wang J C, Zhu J, Wang S J 2013 Mater. Sci. Forum. 733 314

    [26]

    Kuang P, Han X L, Cao X Z, Xia R, Zhang P, Wang B Y 2017 Chin. Phys. B 26 057802

    [27]

    Kuang P 2017 Ph. D. Dissertation (Beijing:Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [况鹏 2017 博士学位论文(北京:中国科学院高能物理研究所)]

  • [1]

    An Z, Hou Q 2008 Phys. Rev. A 77 042702

    [2]

    Wang J J, Gong J, Gong Z L, Yan X L, Wang B 2009 The second National Symposium on Nuclear Technology and Applied Research Mianyang, China, May 1, 2009 p331 (in Chinese) [王君君, 龚静, 宫振丽, 闫晓丽, 王波 2009 第二届全国核技术及应用研究学术研讨会 中国绵阳, 2009年5月1日, 第331页]

    [3]

    Llovet X, Powell C J, Salvat F, Jablonski A 2014 J. Phys. Chem. Ref. Data 43 013102

    [4]

    Sepúlveda A, Bertol A P, Vasconcellos M A Z, Trincavelli J, Hinrichs R, Castellano G 2014 J. Phys. B:At. Mol. Opt. Phys. 47 215006

    [5]

    Zhao J L, An Z, Zhu J J, Tan W J, Liu M T 2017 Radiat. Phys. Chem. 134 71

    [6]

    Qian Z C, Wu Y, Chang C H, Yuan Y, Mei C S, Zhu J J, Moharram K 2017 Europhys. Lett. 118 13001

    [7]

    Zhao J L, Tian L X, Li X L, An Z, Zhu J J, Liu M T 2015 Radiat. Phys. Chem. 107 47

    [8]

    Nagashima Y, Saito F, Itoh Y 2004 Phys. Rev. Lett. 92 223201

    [9]

    Nagashima Y, Shigeta W, Hyodo T 2007 Radiat. Phys. Chem. 76 465

    [10]

    Tian L X, Liu M T, Zhu J J, An Z, Wang B Y, Qin X B 2012 Plasma Sci. Technol. 14 434

    [11]

    Hippler R 1990 Phys. Lett. A 144 81

    [12]

    Luo S, Joy D C 1991 Microbeam Analysis (Vol. 1) (San Francisco:San Francisco Press) pp67-68

    [13]

    Khare S P, Wadehra J M 1996 Can. J. Phys. 74 376

    [14]

    Segui S, Dingfelder M, Salvat F 2003 Phys. Rev. A 67 062710

    [15]

    Colgan J, Fontes C J, Zhang H L 2006 Phys. Rev. A 73 062711.

    [16]

    Salvat F, Fernández-Vaea J M, Sempau J 2005 PENELOPE-2005, A Code System for Monte Carlo Simulation of Electron and Photon Transport (Vol. 1) (Issy-les-Moulineau:OECD/NEA Data) ppix-xii

    [17]

    Zhu J J, An Z, Liu M T, Tian L X 2009 Phys. Rev. A 79 052710

    [18]

    Cullen D E, Hubbell J H, Kissel L 1997 Report UCRL-0400 6 5

    [19]

    Ribberfors R 1983 Phys. Rev. A 27 3061

    [20]

    Tian L X, Zhu J J, Liu M T, An Z 2009 Nucl. Instr. Meth. Phys. Res. B 267 3495

    [21]

    Bote D, Llovet X, Salvat F 2008 J. Phys. D:Appl. Phys. 41 105304

    [22]

    Sempau J, Fernández-Vaea J M, Acosta E, Salvat F 2003 Nucl. Instr. Meth. Phys. Res. B 207 107

    [23]

    Salvat F, Llovet X, Fernández-Vaea J M, Sempau J 2006 Microchim. Acta 155 67

    [24]

    Mayol R, Salvat F 1990 Phys. B 23 2117

    [25]

    He C Q, Wang J C, Zhu J, Wang S J 2013 Mater. Sci. Forum. 733 314

    [26]

    Kuang P, Han X L, Cao X Z, Xia R, Zhang P, Wang B Y 2017 Chin. Phys. B 26 057802

    [27]

    Kuang P 2017 Ph. D. Dissertation (Beijing:Institute of High Energy Physics, Chinese Academy of Sciences) (in Chinese) [况鹏 2017 博士学位论文(北京:中国科学院高能物理研究所)]

  • [1] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Li Bo, Li Ling, Zhu Jing-Jun, Lin Wei-Ping, An Zhu. Measurements of K-shell ionization cross sections and L-shell X-ray production cross sections of Al, Ti, Cu, Ag, and Au thin films by low-energy electron impact. Acta Physica Sinica, 2022, 71(17): 173402. doi: 10.7498/aps.71.20220162
    [4] Zhou Bin, Yu Quan-Zhi, Zhang Hong-Bin, Zhang Xue-Ying, Ju Yong-Qin, Chen Liang, Ruan Xi-Chao. Measurement of radioactive residual nuclides induced in Cu target by 80.5 MeV/u carbon ions. Acta Physica Sinica, 2021, 70(7): 072501. doi: 10.7498/aps.70.20201503
    [5] Wang Guo-Qiang, Zhang Shuo, Yang Jun-Yuan, Xu Xiao-Ke. Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission. Acta Physica Sinica, 2021, 70(1): 010201. doi: 10.7498/aps.70.20201371
    [6] Li Ying-Han, An Zhu, Zhu Jing-Jun, Li Ling. Characteristic X-ray yields and cross sections of thick targets of Al, Ti, Zr, W and Au induced by keV-electron impact. Acta Physica Sinica, 2020, 69(13): 133401. doi: 10.7498/aps.69.20200264
    [7] Yang Yi-Wei, Yan Xiao-Song, Liu Rong, Lu Xin-Xin, Jiang Li, Wang Mei, Lin Ju-Fang. Measurements and analyses of uranium reaction rates on a depleted uranium shell with D-T neutrons. Acta Physica Sinica, 2013, 62(2): 022801. doi: 10.7498/aps.62.022801
    [8] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [9] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [10] Xiao Yuan, Wang Xiao-Fang, Teng Jian, Chen Xiao-Hu, Chen Yuan, Hong Wei. Simulation study of radiography using laser-produced electron beam. Acta Physica Sinica, 2012, 61(23): 234102. doi: 10.7498/aps.61.234102
    [11] Zhao Xing-Yu, Wang Li-Na, Fan Xiao-Hui, Zhang Li-Li, Wei Lai, Zhang Jin-Lu, Huang Yi-Neng. Computer simulation of the string relaxation modes of the molecule-string model for glass transition. Acta Physica Sinica, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [12] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [13] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [14] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [15] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [16] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [17] Wang Shi-Qi, Lian Gui-Jun, Xiong Guang-Cheng. Electronic transport properties and simulation of random resistor network in granular mixture system of La0.7Ca0.3MnO3 and CeO 2. Acta Physica Sinica, 2005, 54(8): 3815-3821. doi: 10.7498/aps.54.3815
    [18] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [19] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [20] Guo Zeng-Bao. . Acta Physica Sinica, 2002, 51(10): 2344-2348. doi: 10.7498/aps.51.2344
Metrics
  • Abstract views:  6929
  • PDF Downloads:  84
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2018
  • Accepted Date:  22 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回