Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical and experimental study of self-reconstruction property of astigmatic Bessel beam

Yang Yan-Fei Chen Jing Wu Feng-Tie Hu Run Zhang Hui-Zhong Hu Han-Qing

Citation:

Theoretical and experimental study of self-reconstruction property of astigmatic Bessel beam

Yang Yan-Fei, Chen Jing, Wu Feng-Tie, Hu Run, Zhang Hui-Zhong, Hu Han-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, the self-reconstruction property of astigmatic Bessel beam is studied experimentally and theoretically. Based on the Fresnel diffraction integral theory and Babinet principle, the general expression of the intensity distribution of astigmatic Bessel beams passing through a circular obstacle is derived. The cross-section light intensity at transmission distance of, 10, 30, and 80 mm after astigmatism of the astigmatic Bessel beam are occluded by circular obstacles. The self-reconstruction process of the light field is observed and verified by using an specially designed experimental setup. In the experiment, we choose He-Ne laser as a light source, collimate and expand the beam through a telescope system, and a zero-order astigmatic Bessel beam is generated by a beam vertically incident on the tilted axicon after the diaphragm. A circular obstacle with a radius of 0.2 mm is placed at a distance of 200 mm behind the axicon. Finally, the cross-section intensities at different distances are observed and recorded by a microscope. The experimental phenomena are in good agreement with the theoretical prediction. The results show that the reconstruction of the zero-order astigmatic Bessel beams will occur after passing through the on-axis and off-axis obstacles. And as the transmission distance increases, the outer contour size of the astigmatic Bessel beam becomes larger, and the number of central spot arrays increases, and the complete beam is gradually reconstructed. Particularly, this feature is different from the behavior of the non-diffracting Bessel beam, which maintains the light field unchanged during transmission and has a single central spot. It is expected to be applied to multi-layer multi-particle control. And a new optical property is discovered in the experiments: the reconstruction speed of the beam in the horizontal and vertical direction are not consistent in the reconstruction process, and there is a certain speed difference. Further, we add a spiral phase plate between the diaphragm and the axicon to produce a high-order astigmatic Bessel beam. And it is verified that the high-order astigmatism Bessel beam has the same self-reconstruction characteristics after being shielded by obstacles. Compared with the zero-order aperture system, the high-order beam can not only expand the operating range, but also use the orbital angular momentum carried by the beam to achieve light rotation, which makes the particle manipulation more flexible. The research proves the self-reconstruction characteristics of astigmatic Bessel beams theoretically and experimentally, and broadens the research range of astigmatic Bessel beams. The research results have practical significance and application value in the field of optical micro-manipulation.
      Corresponding author: Wu Feng-Tie, fengtie@hqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774103) and the Young Scientist Fund of the National Natural Science Foundation of China (Grant Nos. 61605049, 61802136).
    [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 288

    [3]

    Ambrosio L A, Zamboni-Rached M 2015 J. Opt. Soc. Am. B 32 B37

    [4]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [5]

    Planchon T A, Liang G, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [6]

    Luo H, Zhou J, Wen S, et al. 2015 Opt. Lett. 40 5506

    [7]

    Liu Y, Ke Y, Zhou J, et al. 2017 Sci. Rep. 7 44096

    [8]

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203 (in Chinese) [陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203]

    [9]

    Rao A S, Samanta G K 2018 Opt. Lett. 43 3029

    [10]

    Zhao B, Zhu L 1998 Appl. Opt. 37 2563

    [11]

    Thaning A, Jaroszewicz Z, Friberg A T 2003 Appl. Opt. 42 9

    [12]

    Liu S, Li Y F, Cai X Y, Zhang N 2016 Acta Phys. Sin. 65 194210 (in Chinese) [刘莎, 李亚飞, 蔡先勇, 张楠 2016 物理学报 65 194210]

    [13]

    Jiang X G, Wu F T 2008 Acta Phys. Sin. 57 4207 (in Chinese) [江新光, 吴逢铁 2008 物理学报 57 4207]

    [14]

    Hu R, Wu F T, Zhu Q Z, Yang Y F 2017 Acta Opt. Sin. 37 0826002 (in Chinese) [胡润, 吴逢铁, 朱清智, 杨艳飞 2017 光学学报 37 0826002]

    [15]

    Yang Y F, Wu F T, Zhu Q Z, Hu R 2018 Acta Opt. Sin. 38 0505004 (in Chinese) [杨艳飞, 吴逢铁, 朱清智, 胡润 2018 光学学报 38 0505004]

    [16]

    Garcés-Chávez V, Mcgloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [17]

    Lee K S, Rolland J P 2008 Opt. Lett. 33 1696

    [18]

    Weber N, Spether D, Seifert A, Zappe H 2012 J. Opt. Soc. Am. A 29 808

    [19]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [20]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. China: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [21]

    Li D, Wu F T, Xie X X, Sun C 2015 Acta Phys. Sin. 64 014201 (in Chinese) [李冬, 吴逢铁, 谢晓霞, 孙川 2015 物理学报 64 014201]

    [22]

    Anguianomorales M, Martínez A, Iturbecastillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [23]

    Yang G G, Song F J 2008 Higher Physical Optics (2nd Edition) (Hefei: China University of Science and Technology Press) pp81-82 (in Chinese) [羊国光, 宋菲君 2008 高等物理光学(第2版) (合肥: 中国科学技术大学出版社) 第81–82页]

  • [1]

    Durnin J, Miceli J J, Eberly J H 1987 Phys. Rev. Lett. 58 1499

    [2]

    Gecevičius M, Drevinskas R, Beresna M, Kazansky P G 2014 Appl. Phys. Lett. 104 288

    [3]

    Ambrosio L A, Zamboni-Rached M 2015 J. Opt. Soc. Am. B 32 B37

    [4]

    Fickler R, Lapkiewicz R, Plick W N, Krenn M, Schaeff C, Ramelow S, Zeilinger A 2012 Science 338 640

    [5]

    Planchon T A, Liang G, Milkie D E, Davidson M W, Galbraith J A, Galbraith C G, Betzig E 2011 Nat. Methods 8 417

    [6]

    Luo H, Zhou J, Wen S, et al. 2015 Opt. Lett. 40 5506

    [7]

    Liu Y, Ke Y, Zhou J, et al. 2017 Sci. Rep. 7 44096

    [8]

    Chen H, Ling X H, He W G, Li Q G, Yi X N 2017 Acta Phys. Sin. 66 044203 (in Chinese) [陈欢, 凌晓辉, 何武光, 李钱光, 易煦农 2017 物理学报 66 044203]

    [9]

    Rao A S, Samanta G K 2018 Opt. Lett. 43 3029

    [10]

    Zhao B, Zhu L 1998 Appl. Opt. 37 2563

    [11]

    Thaning A, Jaroszewicz Z, Friberg A T 2003 Appl. Opt. 42 9

    [12]

    Liu S, Li Y F, Cai X Y, Zhang N 2016 Acta Phys. Sin. 65 194210 (in Chinese) [刘莎, 李亚飞, 蔡先勇, 张楠 2016 物理学报 65 194210]

    [13]

    Jiang X G, Wu F T 2008 Acta Phys. Sin. 57 4207 (in Chinese) [江新光, 吴逢铁 2008 物理学报 57 4207]

    [14]

    Hu R, Wu F T, Zhu Q Z, Yang Y F 2017 Acta Opt. Sin. 37 0826002 (in Chinese) [胡润, 吴逢铁, 朱清智, 杨艳飞 2017 光学学报 37 0826002]

    [15]

    Yang Y F, Wu F T, Zhu Q Z, Hu R 2018 Acta Opt. Sin. 38 0505004 (in Chinese) [杨艳飞, 吴逢铁, 朱清智, 胡润 2018 光学学报 38 0505004]

    [16]

    Garcés-Chávez V, Mcgloin D, Melville H, Sibbett W, Dholakia K 2002 Nature 419 145

    [17]

    Lee K S, Rolland J P 2008 Opt. Lett. 33 1696

    [18]

    Weber N, Spether D, Seifert A, Zappe H 2012 J. Opt. Soc. Am. A 29 808

    [19]

    Broky J, Siviloglou G A, Dogariu A, Christodoulides D N 2008 Opt. Express 16 12880

    [20]

    Zhang Q A, Wu F T, Zheng W T, Pu J X 2011 Sci. China: Phys. Mech. Astron. 41 1131 (in Chinese) [张前安, 吴逢铁, 郑维涛, 蒲继雄 2011 中国科学: 物理学 力学 天文学 41 1131]

    [21]

    Li D, Wu F T, Xie X X, Sun C 2015 Acta Phys. Sin. 64 014201 (in Chinese) [李冬, 吴逢铁, 谢晓霞, 孙川 2015 物理学报 64 014201]

    [22]

    Anguianomorales M, Martínez A, Iturbecastillo M D, Chávez-Cerda S, Alcalá-Ochoa N 2007 Appl. Opt. 46 8284

    [23]

    Yang G G, Song F J 2008 Higher Physical Optics (2nd Edition) (Hefei: China University of Science and Technology Press) pp81-82 (in Chinese) [羊国光, 宋菲君 2008 高等物理光学(第2版) (合肥: 中国科学技术大学出版社) 第81–82页]

  • [1] Wu Wen-Bing, Sheng Zong-Qiang, Wu Hong-Wei. Design and application of flat spiral phase plate. Acta Physica Sinica, 2019, 68(5): 054102. doi: 10.7498/aps.68.20181677
    [2] Chen Jia-Zhen, Zheng Zi-Hua, Ye Feng, Lian Gui-Ren, Xu Li. Multiple Fresnel computer-generated hologram watermark of three-dimensional object and its adjustable reconstruction without interference. Acta Physica Sinica, 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [3] Pan An, Wang Dong, Shi Yi-Shi, Yao Bao-Li, Ma Zhen, Han Yang. Incoherent ptychography in Fresnel domain with simultaneous multi-wavelength illumination. Acta Physica Sinica, 2016, 65(12): 124201. doi: 10.7498/aps.65.124201
    [4] Ren Zhi-Jun, Li Xiao-Dong, Jin Hong-Zhen, Shi Yi-Le, Yang Zhao-Qing. Construction of Bi-Pearcey beams and their mathematical mechanism. Acta Physica Sinica, 2016, 65(21): 214208. doi: 10.7498/aps.65.214208
    [5] Li Dong, Wu Feng-Tie, Xie Xiao-Xia, Sun Chuan. Theoretical and experimental studies on the self-reconstruction property of non-diffracting Mathieu beam. Acta Physica Sinica, 2015, 64(1): 014201. doi: 10.7498/aps.64.014201
    [6] Liu Ji-Lin, Chen Zi-Yang, Zhang Lei, Pu Ji-Xiong. Polarization and propagation characteristics of the azimuthally polarized non-diffracting beam. Acta Physica Sinica, 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [7] Shi Jian-Zhen, Yang Shen, Zou Ya-Qi, Ji Xian-Ming, Yin Jian-Ping. Generation of vortex beams by the four-step phase plates. Acta Physica Sinica, 2015, 64(18): 184202. doi: 10.7498/aps.64.184202
    [8] Song Hong-Sheng, Zhuang Qiao, Liu Gui-Yuan, Qin Xi-Feng, Cheng Chuan-Fu. Statistical characteristics and variation of speckle intensity in deep fresnel diffraction region. Acta Physica Sinica, 2014, 63(9): 094201. doi: 10.7498/aps.63.094201
    [9] Liu Lan-Qin, Zhang Ying, Geng Yuan-Chao, Wang Wen-Yi, Zhu Qi-Hua, Jing Feng, Wei Xiao-Feng, Huang Wan-Qing. Propagation characteristics of small-bandwidth pulsed beams with smoothing by spectral dispersion in high power laser system. Acta Physica Sinica, 2014, 63(16): 164201. doi: 10.7498/aps.63.164201
    [10] Fan Dan-Dan, Wu Feng-Tie, Cheng Zhi-Ming, Zhu Jian-Qiang. Reconstruction of incoherent source Bessel beam. Acta Physica Sinica, 2013, 62(10): 104219. doi: 10.7498/aps.62.104219
    [11] Chen Xiao-Yi, Liu Man, Li Hai-Xia, Zhang Mei-Na, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu. Experimental study of the evolution of phase vortices in the speckle fields generated by weak scattering screens in the extremely deep Fresnel diffraction region. Acta Physica Sinica, 2012, 61(7): 074201. doi: 10.7498/aps.61.074201
    [12] Fan Dan-Dan, Wu Feng-Tie, Cheng Zhi-Ming, Wang Tao, Du Tuan-Jie, Zhu Jian-Qiang. The self-reconstruction of periodic Bottle beam behind obstacle. Acta Physica Sinica, 2012, 61(24): 244104. doi: 10.7498/aps.61.244104
    [13] Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan. Lensless coherent diffractive imaging with a Fresnel diffraction pattern. Acta Physica Sinica, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [14] Fan Dan-Dan, Zhang Qian-An, Cheng Zhi-Ming, Zheng Wei-Tao, Wu Feng-Tie. Simulation and experimental confirmation on the reconstruction of Bessel beams. Acta Physica Sinica, 2012, 61(16): 164103. doi: 10.7498/aps.61.164103
    [15] Wang Xiao-Fang, Wang Jing-Yu. Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate. Acta Physica Sinica, 2011, 60(2): 025212. doi: 10.7498/aps.60.025212
    [16] Yan Min-Yi, Wang Dan-Qing, Ma Zhong-Yuan, Yao Yao, Liu Guang-Yuan, Li Wei, Huang Xin-Fan, Chen Kun-Ji, Xu Jun, Xu Ling. Light intensity distribution in laser interference crystallization and the fabrication of two-dimensional periodic nanocrystalline silicon array. Acta Physica Sinica, 2010, 59(5): 3205-3209. doi: 10.7498/aps.59.3205
    [17] Dong Jian-Jun, Cao Lei-Feng, Chen Ming, Xie Chang-Qing, Du Hua-Bing. Study on the focus performance of micro-focus Fresnel zone plate. Acta Physica Sinica, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [18] Peng Xiang, Wei Heng-Zheng, Zhang Peng. Chosen plaintext attack on double random-phase encoding in the Fresnel domain. Acta Physica Sinica, 2007, 56(7): 3924-3930. doi: 10.7498/aps.56.3924
    [19] Wang Huai-Sheng. Talbot effect of a grating under chirped ultrashort pulsed laser illumination. Acta Physica Sinica, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [20] Teng Shu-Yun, Cheng Chuan-Fu, Liu Man, Liu Li-Ren, Xu Zhi-Zhan. Study on the properties of the dynamic partially coherent speckle in the Fresnel and Fraunhofer diffraction regions. Acta Physica Sinica, 2003, 52(2): 316-323. doi: 10.7498/aps.52.316
Metrics
  • Abstract views:  6077
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  25 July 2018
  • Accepted Date:  02 October 2018
  • Published Online:  20 November 2019

/

返回文章
返回