Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular structure and electronic spectrum of C12H4Cl4O2 under external electric field

Du Jian-Bin Feng Zhi-Fang Han Li-Jun Tang Yan-Lin Wu De-Qi

Citation:

Molecular structure and electronic spectrum of C12H4Cl4O2 under external electric field

Du Jian-Bin, Feng Zhi-Fang, Han Li-Jun, Tang Yan-Lin, Wu De-Qi
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Various environmental poisons have caused damage to human production and life, and dioxin has seriously harmed human health. The C12H4Cl4O2(2, 3, 7, 8-tetrachlorodibenzo-p-dioxin, TCDD) is currently the most toxic compound. In order to study the influence of external electrical field on molecular structure and spectrum, herein the density functional theory (DFT) at a B3LYP/6-31+g (d,p) level is employed to calculate the geometrical parameters of the ground state of TCDD molecule under external electric fields ranging from 0 to 0.025 a.u. (0-1.2856×1010 V/m). Based on the optimized structure, time-dependent DFT at the same level as the above is adopted to calculate the absorption wavelengths and the molar absorption coefficients for the first twenty-six excited states of TCDD molecule under external electric fields. The results show that the most absorption band located at 221 nm with a molar absorption coefficient of 54064 L·mol-1·cm-1 in the UV-Vis absorption spectrum appears in the E belt, which originates from the benzene electronic transition from π to π*. In addition, a shoulder peak at 296 nm appears in the B belt, which is the characteristic absorption of aromatic compounds' electron transition from π to π*. Compared with the data in the literature, the wavelength of the shoulder is blue-shifted only 9 nm. The molecular geometry parameters are strongly dependent on the external field intensity, and the total energy decreases with external field intensity increasing. With the enhancement of external electric field, the electrons in the molecule have an overall transfer, which makes the big bond of benzene ring weakened, the energy of the transition decreases, and the wavelength of the transition increases, that is, the absorption peak is red-shifted. When the external electric field increases to 0.02 a.u., the electron cloud migration phenomenon of occupied and transition orbits of TCDD molecule are obvious, and the absorption peak red shift phenomenon is also very significant. With the enhancement of external electric field, the overall transfer of electrons in the molecule also reduces the density of the benzene rings and the surrounding electron cloud, reduces the number of electrons in the transition from π to π*, and also reduces the molar absorption coefficient. When the external electric field is enhanced to 0.02 a.u., the molar absorption coefficient decreases significantly. This work provides a theoretical basis for studying the TCDD detection and degradation method, and also has implications for other environmental pollutants detection methods and degradation mechanisms.
      Corresponding author: Du Jian-Bin, dujianbinfzf@sina.com
    • Funds: Project supported by the College and Universities in Hebei Province Science and Technology Research, China (Grant No. QN2015219) and the Natural Science Foundation of Langfang Normal University, China (Grant No. LSZQ201105).
    [1]

    Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]

    [2]

    Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]

    [3]

    Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590

    [4]

    Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]

    [5]

    Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64

    [6]

    Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60

    [7]

    Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]

    [8]

    Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509

    [9]

    Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18

    [10]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]

    [11]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [12]

    Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [13]

    Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]

    [14]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111

    [15]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002

    [16]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329

    [17]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [18]

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]

    [19]

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]

    [20]

    Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427

    [21]

    Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89

    [22]

    Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274

    [23]

    Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014

    [24]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101

    [25]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101

    [26]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [27]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [28]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]

    [29]

    Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39

  • [1]

    Dong S J, Liu G R, Zhu Q Q, Zhang X, Zheng M H 2016 Chin. Sci. Bull. 61 1336 (in Chinese) [董姝君, 刘国瑞, 朱青青, 张宪, 郑明辉 2016 科学通报 61 1336]

    [2]

    Qian L X, Long H M, Wu X J, Chun T J, Wang Y P 2016 Environ. Pollut. Control 38 34 (in Chinese) [钱立新, 龙红明, 吴雪健, 春铁军, 王毅璠 2016 环境污染与防治 38 34]

    [3]

    Fernández-González R, Yebra-Pimentel I, Martinez-Carballo E, Simal-Gándara J 2015 Crit. Rev. Food Sci. 55 1590

    [4]

    Yang X, Yu G, Wang L S 2002 Chin. Sci. Bull. 47 269 (in Chinese) [杨曦, 余刚, 王连生 2002 科学通报 47 269]

    [5]

    Miyazaki W, Fujiwara Y, Katoh T 2016 Neuro. Toxicol. 52 64

    [6]

    Fracchiolla N S, Annaloro C, Guidotti F, Fattizzo B, Cortelezzi A 2016 Toxicology 374 60

    [7]

    Du G Y, Wang Q, Zhang S L, Zhang S K, Deng C P, Zhang H M, Zhu M X, Jiang X, Zhu C W, Ren Y L 2017 Environ. Sci. 38 2280 (in Chinese) [杜国勇, 汪倩, 张姝琳, 张素坤, 邓春萍, 张洪铭, 朱盟翔, 蒋昕, 朱成旺, 任燕玲 2017 环境科学 38 2280]

    [8]

    Zhang H P, Hou J L, Wang Y B, Tang P P, Zhang Y P, Lin X Y, Liu C S, Tang Y H 2017 Chemosphere 185 509

    [9]

    Wang R X, Zhang D J, Liu C B 2017 Chemosphere 168 18

    [10]

    Wang F H, Huang D H, Yang J S 2013 Acta Phys. Sin. 62 073102 (in Chinese) [王藩侯, 黄多辉, 杨俊升 2013 物理学报 62 073102]

    [11]

    Ellert C, Corkum P B 1999 Phys. Rev. A 59 R3170

    [12]

    Walsh T D G, Starch L, Chin S L 1998 J. Phys. B: At. Mol. Opt. Phys. 31 4853

    [13]

    Wu H J, Wu M, Xie M S, Liu H, Yang M, Sun F X, Du H Z 2000 Chin. J. Catal. 21 399 (in Chinese) [吴合进, 吴鸣, 谢茂松, 刘鸿, 杨民, 孙福侠, 杜鸿章 2000 催化学报 21 399]

    [14]

    Rai D, Joshi H, Kulkarni A D, Gejji S P, Pathak R K 2007 J. Phys. Chem. A 111 9111

    [15]

    Ledingham K W D, Singhal R P, Smith D J, McCanny T, Graham P, Kilic H S, Peng W X, Wang S L, Langley A J, Taday P F, Kosmidis C 1998 J. Phys. Chem. A 102 3002

    [16]

    Ellert C, Stapelfeldt H, Constant E 1998 Phil. Trans. R. Sol. Lond. A 356 329

    [17]

    Iwamae A, Hishikawa A, Yamanouchi K 2000 J. Phys. B: At. Mol. Opt. Phys. 33 223

    [18]

    Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Ling Hu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]

    [19]

    Xie A D, Xie J, Zhou L L, Wu D L, Ruan W, Luo W L 2016 Chin. J. Atom. Mol. Phys. 33 989 (in Chinese) [谢安东, 谢晶, 周玲玲, 伍冬兰, 阮文, 罗文浪 2016 原子与分子物理学报 33 989]

    [20]

    Khana M S, Pala S, Krupadamb R J 2015 J. Mol. Recognit. 28 427

    [21]

    Gasiorskia P, Matusiewicza M, Gondekb E, Uchaczc T, Wojtasikd K, Daneld A, Shchure Y, Kityka A V 2017 Spectrochim. Acta A 186 89

    [22]

    Liu X G, Cole M J, Xu Z C 2017 J. Phys. Chem. C 121 13274

    [23]

    Großema F C, Telesca R, Joukman H T, Snijders J G 2001 J. Chem. Phys. 115 10014

    [24]

    Xu G L, Xie H X, Yuan W, Zhang X Z, Liu Y F 2012 Chin. Phys. B 21 053101

    [25]

    Wu D L, Tan B, Wan H J, Zang X Q, Xie A D 2013 Chin. Phys. B 22 123101

    [26]

    Kjellberg P, He Z, Pullerits T 2003 J. Phys. Chem. B 107 13737

    [27]

    Zhu Z H, Fu Y B, Gao T, Chen Y L, Chen X J 2003 Chin. J. Atom. Mol. Phys. 20 169 (in Chinese) [朱正和, 付依备, 高涛, 陈银亮, 陈晓军 2003 原子与分子物理学报 20 169]

    [28]

    Chen X J, Luo S Z, Jiang S B, Huang W, Gao X L, Ma M Z, Zhu Z H 2004 Chin. J. Atom. Mol. Phys. 21 203 (in Chinese) [陈晓军, 罗顺忠, 蒋树斌, 黄玮, 高小玲, 马美仲, 朱正和 2004 原子与分子物理学报 21 203]

    [29]

    Koshioka M, Ishizaka M, Yamada T, Kanazawa J, Murai T 1990 J. Pesticide Sci. 15 39

  • [1] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [3] Li Shi-Xiong, Chen De-Liang, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie. Study on the ground state properties and excitation properties of C18 under different external electric fields. Acta Physica Sinica, 2020, 69(10): 103101. doi: 10.7498/aps.69.20200268
    [4] Li Ya-Sha, Sun Lin-Xiang, Zhou Xiao, Chen Kai, Wang Hui-Yao. Structure and excitation characteristics of C5F10O under external electric field based on density functional theory. Acta Physica Sinica, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [5] Du Jian-Bin, Feng Zhi-Fang, Zhang Qian, Han Li-Jun, Tang Yan-Lin, Li Qi-Feng. Molecular structure and electronic spectrum of MoS2under external electric field. Acta Physica Sinica, 2019, 68(17): 173101. doi: 10.7498/aps.68.20190781
    [6] Feng Qiu-Ju, Li Fang, Li Tong-Tong, Li Yun-Zheng, Shi Bo, Li Meng-Ke, Liang Hong-Wei. Growth and characterization of grid-like β-Ga2O3 nanowires by electric field assisted chemical vapor deposition method. Acta Physica Sinica, 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [7] Li Ya-Sha, Xie Yun-Long, Huang Tai-Huan, Xu Cheng, Liu Guo-Cheng. Molecular structure and properties of salt cross-linked polyethylene under external electric field based on density functional theory. Acta Physica Sinica, 2018, 67(18): 183101. doi: 10.7498/aps.67.20180808
    [8] Du Jian-Bin, Zhang Qian, Li Qi-Feng, Tang Yan-Lin. Investigation of external electric field effect on C24H38O4 molecule by density functional theory. Acta Physica Sinica, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [9] Li Shi-Xiong, Zhang Zheng-Ping, Long Zheng-Wen, Qin Shui-Jie. Ground state properties and spectral properties of borospherene B40 under different external electric fields. Acta Physica Sinica, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [10] Wu Yong-Gang, Li Shi-Xiong, Hao Jin-Xin, Xu Mei, Sun Guang-Yu, Linghu Rong-Feng. Properties of ground state and spectrum of CdSe in different external electric fields. Acta Physica Sinica, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [11] Xu Guo-Liang, Zhang Lin, Lu Zhan-Sheng, Liu Pei, Liu Yu-Fang. Electric field effects on the excited properties of Si2N2 molecule with special configuration:a density-functional study. Acta Physica Sinica, 2014, 63(10): 103101. doi: 10.7498/aps.63.103101
    [12] Cao Xin-Wei, Ren Yang, Liu Hui, Li Shu-Li. Molecular structure and excited states for BN under strong electric field. Acta Physica Sinica, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [13] Li Tao, Tang Yan-Lin, Ling Zhi-Gang, Li Yu-Peng, Long Zhen-Wen. Influence of external electric field on the molecular structure and electronic spectrum of paranitrochlorobenzene. Acta Physica Sinica, 2013, 62(10): 103103. doi: 10.7498/aps.62.103103
    [14] Du Jian-Bin, Tang Yan-Lin, Long Zhen-Wen. Molecular structure and electronic spectrum of pentachlorophenol in the external electric field. Acta Physica Sinica, 2012, 61(15): 153101. doi: 10.7498/aps.61.153101
    [15] He Jian-Yong, Long Zheng-Wen, Long Chao-Yun, Cai Shao-Hong. Molecular structure and electronic spectrum of CaS under electric fields. Acta Physica Sinica, 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [16] Yan An-Ying, Jiang Ming, Zhang Chuan-Wu, Miao Feng, Gou Fu-Jun. Energy and spectrum of BeO molecule under the electric field from different directions. Acta Physica Sinica, 2010, 59(11): 7743-7748. doi: 10.7498/aps.59.7743
    [17] Xu Guo-Liang, Liu Xue-Feng, Xia Yao-Zheng, Zhang Xian-Zhou, Liu Yu-Fang. Excitation of Si2O molecule under external electric field. Acta Physica Sinica, 2010, 59(11): 7756-7761. doi: 10.7498/aps.59.7756
    [18] Gao Tao, Zhou Jing-Jing, Chen Yun-Gui, Wu Chao-Ling, Xiao Yan. Spatial configurations and X-ray absorption of Ti catalyzing on NaAlH4 surfaces: Car-Parrinello molecular dynamics and density functional theory study. Acta Physica Sinica, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [19] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [20] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
Metrics
  • Abstract views:  7268
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  30 July 2018
  • Accepted Date:  12 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回