Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rayleigh-Bénard-Marangoni convection characteristics during mass transfer between liquid layers

Chen Jun Shen Chao-Qun Wang He Zhang Cheng-Bin

Citation:

Rayleigh-Bénard-Marangoni convection characteristics during mass transfer between liquid layers

Chen Jun, Shen Chao-Qun, Wang He, Zhang Cheng-Bin
PDF
HTML
Get Citation
  • Rayleigh-Bénard-Marangoni convection (RBM convection) induced by the mass transfer has a great influence on the performance of real chemical engineering process. However, the researches of RBM convection characteristics during mass transfer across the interface in liquid-liquid system and their influence on the interface morphology are still limited. In this research, a visualization experiment via the amplified shadowgraph method is conducted to investigate the mass transfer in water-toluene-acetone system in a vertical slit. The convective structure of RBM and its evolution are visually observed. The effects of the initial acetone concentration of aqueous phase and toluene phase, and the thickness of toluene layer on the RBM characteristics and the morphology of the liquid-liquid interface are investigated. The experimental results show that these structures are induced by the interface tension difference along the interface and the vertical density difference caused by non-uniform mass transfer at the interface. As a result of the mass transfer at the interface, the density stratification occurs at the top of the aqueous phase, where the light liquid layer supports heavy one. In addition, non-uniform mass transfer produces perturbation at the top of the aqueous phase, which induces the Rayleigh-Taylor instability at the " interface” between the heavy and light liquid layer. Consequently, a wave-shaped-mound " interface” in the upper aqueous phase is formed as the heavy liquid comes down into the light one, and it can be further evolved into a plume flow with the enhancement of the imbalance between density and pressure at the " interface”. Due to the difference in mass transfer characteristic caused by different concentration gradients in the plume " interface”, the plumes can also evolve into weak plumes and strong plumes. Under the large acetone concentration gradient, a number of RBM convective structures are generated near the interface in a short time and the convective cloud is formed due to the dramatic interaction and coalescence between these structures. With the weakening of mass transfer, the convective cloud disappears and the strong plume is gradually formed. In addition, the strength of RBM convection is demonstrated to be positively correlated with the acetone concentration gradient across the aqueous solution- toluene interface. In addition, the roughness of the interface and its unsteady fluctuation grow up with the increase of acetone concentration gradient across the interface.
      Corresponding author: Zhang Cheng-Bin, cbzhang@seu.edu.cn
    • Funds: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1530260), the National Natural Science Foundation of China (Grant No. 51706193), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB470014).
    [1]

    Yao F, Chen Y P, Peterson G P 2013 Int. J. Heat Mass Transfer 64 418Google Scholar

    [2]

    Liu X D, Chen Y P, Shi M H 2013 Int. J. Therm. Sci. 65 224Google Scholar

    [3]

    Chen Y P, Cheng P 2005 Int. J. Heat Mass Transfer 32 931Google Scholar

    [4]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [7]

    Schwabe D 1999 Adv. Space Res. 24 1347Google Scholar

    [8]

    Touazi O, Chénier E, Doumenc F, Guerrier B 2010 Int. J. Heat Mass Transfer 53 656Google Scholar

    [9]

    Chen J, Yang C, Mao Z S 2015 Eur. Phys. J. Spec. Top. 224 389Google Scholar

    [10]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Kostya O 2015 Chem. Soc. Rev. 44 2018

    [11]

    张婷, 施保昌, 柴振华 2015 物理学报 64 254701

    Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 64 254701

    [12]

    郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298Google Scholar

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298Google Scholar

    [13]

    Kline J L, Hager J D 2016 Matter Radiat. Extremes 2 16

    [14]

    Dong S X, Han W, Liu M F, Zhang Z W, Li B, Ge L Q 2016 Colloids Surf. A 509 32Google Scholar

    [15]

    Bai L, Zhao S F, Fu Y H, Cheng Y 2016 Biochem. Eng. J. 298 281

    [16]

    Sun Z F 2012 Chem. Eng. Sci. 68 579Google Scholar

    [17]

    Liu C, Zeng A, Yuan X, Yu G 2008 Chem. Eng. Res. Des. 86 201Google Scholar

    [18]

    Alvarez-Herrera C, Moreno-Hernández D, Barrientos-García B, Guerrero-Viramontes J A 2005 Opt. Laser Technol. 41 233

    [19]

    Piekarska W, Kubiak M 2013 Appl. Math. Modell. 37 2051Google Scholar

    [20]

    Szymczyk J A 1991 Can. J. Chem. Eng. 69 1233

    [21]

    Okhotsimskii A, Hozawa M 1998 Chem. Eng. Sci. 53 2547Google Scholar

    [22]

    王勇, 张泽廷 2002 北京化工大学学报 29 11Google Scholar

    Wang Y, Zhang Z T 2002 J. Beijing Univ. Chem. Technol. 29 11Google Scholar

    [23]

    Sun Z F, Yu K T, S Y W, Miao Y Z 2002 Ind. Eng. Chem. Res. 41 1905Google Scholar

    [24]

    沙勇, 李樟云, 林芬芬, 吐芬, 肖宗源, 叶李艺 2010 化工学报 61 844

    Sha Y, Li Z Y, Lin F F, Tu F, Xiao Z Y, Ye L Y 2010 J. Chem. Ind. Eng. 61 844

    [25]

    Orell A, Westwater J W 1961 AlChE J. 8 350

    [26]

    Zhang S H, Wang Z M, Su Y F 1990 Chem. Eng. Res. Des. 68 84

    [27]

    Guzun-Stoica A, Kurzeluk M, Floarea O 2000 Chem. Eng. Sci. 55 3813Google Scholar

    [28]

    Kostarev K G, Shmyrov A V, Zuev A L, Viviani A 2011 Exp. Fluids 51 457Google Scholar

    [29]

    Chen Y, Cheng P 2005 Int. Commun. Heat Mass Transfer 32 175Google Scholar

    [30]

    Agble D, Mendes-Tatsis M A 2000 Int. J. Heat Mass Transfer 43 1025Google Scholar

    [31]

    Shi Y, Kerstin E 2007 Chin. J. Chem. Eng. 15 748Google Scholar

    [32]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609Google Scholar

    [33]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601Google Scholar

    [34]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42Google Scholar

    [35]

    Sharp D H 1984 Physica D 12 3Google Scholar

    [36]

    Roberts M S, Jacobs J W 2015 J. Fluid Mech. 787 50

    [37]

    胡楠, 张会书, 傅强, 李陆星, 袁希钢 2016 化工学报 68 584

    Hu L, Zhang H S, Fu Q, Li L X, Yuan X G 2016 J. Chem. Ind. Eng. 68 584

    [38]

    Puthenveettil B A, Arakeri J H 2005 J. Fluid Mech. 542 217Google Scholar

    [39]

    Yang C, Tartaglino U, Persson B N 2006 J. Phys. Rev. Lett. 97 11

  • 图 1  RBM对流的实验系统图 (a) 阴影法实验系统图; (b) 示踪粒子法实验系统图; (c) 玻璃狭缝尺寸图

    Figure 1.  Schematic diagram of the experimental system for RBM convection: (a) Schematic diagram of the experimental system based on shadowgraph method; (b) schematic diagram of the experimental system based on particle tracer method; (c) size of the glass slit.

    图 2  T = 20 ℃时不同水相丙酮浓度下水-甲苯两相间的界面张力系数

    Figure 2.  Interfacial tension coefficient between water and toluene phases under different acetone concentrations of aqueous phase with T = 20 ℃.

    图 3  T = 20 ℃时不同丙酮浓度的水相溶液的密度

    Figure 3.  Density of aqueous solution with different acetone concentrations with T = 20 ℃.

    图 4  传质过程引起的密度分层示意图与实验结果 (a) 密度分层示意图; (b) 实验图像

    Figure 4.  Schematic diagram and experimental result of density stratification caused by mass transfer: (a) Schematic diagram of density stratification; (b) experimental image.

    图 6  丘状“界面”的形成过程(水相丙酮初始体积浓度${\varphi _0} = 5\% $, 甲苯相丙酮初始体积浓度${\varphi _1} = 0\% $) (a) t = 13 s; (b) t = 30 s; (c) t = 36 s; (d) t = 42 s

    Figure 6.  The forming process of the mound “interface” (the initial volume concentration of acetone in aqueous phase ${\varphi _0} = 5\% $, the initial volume concentration of acetone in the toluene phase ${\varphi _1} = 0\% $): (a) t = 13 s; (b) t = 30 s; (c) t = 36 s; (d) t = 42 s.

    图 5  密度分层引起的Rayleigh-Taylor不稳定性示意图 $\omega $是涡流, P是压力, $\rho $是密度, u是速度, g是重力加速度; 粗的环形箭头表示涡旋产生的速度场

    Figure 5.  Schematic diagram of Rayleigh-Taylor instability caused by density stratification. $\omega $ is vorticity, P is pressure, $\rho $ is density, u is velocity and g is acceleration of gravity; the thick circular arrows represent the velocity field created by the vortex.

    图 7  羽状流的演变过程 (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 0 s; (b) t = 18 s; (c) t = 20 s; (d) t = 22 s

    Figure 7.  The evolution of the plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 0 s; (b) t = 18 s; (c) t = 20 s; (d) t = 22 s.

    图 8  弱羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 348 s; (b) t = 356 s; (c) t = 363 s; (d) t = 370 s

    Figure 8.  The evolution of the weak plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 348 s; (b) t = 356 s; (c) t = 363 s; (d) t = 370 s.

    图 10  强羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 22 s; (b) t = 23 s; (c) t = 26 s

    Figure 10.  The evolution of the strong plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 22 s; (b) t = 23 s; (c) t = 26 s.

    图 9  羽状流的速度矢量及涡量云图(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $)

    Figure 9.  The velocity vector and vorticity contours of the plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $).

    图 11  强羽状流向弱羽状流的演变过程(${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $) (a) t = 228 s; (b) t = 234 s; (c) t = 238 s; (d) t = 245 s

    Figure 11.  The evolution of the strong plume flow to the weak plume flow (${\varphi _0} = 15\% $, ${\varphi _1} = 0\% $): (a) t = 228 s; (b) t = 234 s; (c) t = 238 s; (d) t = 245 s.

    图 12  传质初期对流结构的聚并过程(${\varphi _0} \!=\! 30\% $, ${\varphi _1} \!=\! 0\% $)  (a) t = 15 s; (b) t = 20 s; (c) t = 24 s; (d) t = 30 s

    Figure 12.  Convergence process of convective structure at the beginning of the mass transfer (${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $): (a) t = 15 s; (b) t = 20 s; (c) t = 24 s; (d) t = 30 s.

    图 13  对流团的消失以及强羽状流的出现(${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $)  (a) t = 101 s; (b) t = 196 s; (c) t = 259 s; (d) t = 350 s

    Figure 13.  The disappearance of convective cloud and the appearance of the strong plume (${\varphi _0} = 30\% $, ${\varphi _1} = 0\% $): (a) t = 101 s; (b) t = 196 s; (c) t = 259 s; (d) t = 350 s.

    图 14  水相丙酮初始浓度对第一个RBM对流结构向下延伸速度的影响

    Figure 14.  The influence of initial concentration of acetone in aqueous phase on the elongation velocity of the first RBM convective structure.

    图 15  水相丙酮初始浓度对羽状流数量的影响

    Figure 15.  The influence of initial concentration of acetone in aqueous phase on the number of the plumes.

    图 16  水相丙酮初始浓度对水-甲苯界面形貌的影响 (a)界面粗糙度; (b)界面波动程度

    Figure 16.  The influence of initial concentration of acetone in aqueous phase on water-toluene interface morphology: (a) Interfacial roughness; (b) the degree of interface fluctuation.

    图 17  不同甲苯相丙酮初始浓度下的投影图像(t = 35 s, ${\varphi _0} = 20\% $) (a) ${\varphi _1} = 5\% $; (b) ${\varphi _1} = 7.5\% $; (c) ${\varphi _1} = 10\% $; (d) ${\varphi _1} = 15\% $

    Figure 17.  Schlieren images under different initial concentrations of acetone in the toluene phase (t = 35 s, ${\varphi _0} = 20\% $): (a) ${\varphi _1} = 5\% $ (b) ${\varphi _1} = 7.5\% $; (c) ${\varphi _1} = 10\% $; (d) ${\varphi _1} = 15\% $.

    图 18  甲苯相丙酮初始浓度对第一个RBM对流结构向下延伸速度的影响

    Figure 18.  The influence of initial concentration of acetone in the toluene phase on the elongation velocity of the first RBM convective structure.

    图 19  甲苯相丙酮初始浓度对羽状流数量的影响

    Figure 19.  The influence of initial concentration of acetone in the toluene phase on the number of the plumes.

    图 20  甲苯相丙酮初始浓度对水-甲苯界面形貌的影响 (a)界面粗糙度; (b)界面波动程度

    Figure 20.  The influence of initial concentration of acetone in the toluene phase on water-toluene interface morphology: (a) Interfacial roughness; (b) the degree of interface fluctuation.

    图 21  甲苯层厚度对羽状流数量的影响

    Figure 21.  The influence of thickness of toluene layer on the number of the plumes.

    图 22  甲苯层厚度对水-甲苯界面形貌的影响

    Figure 22.  The influence of thickness of toluene layer on water - toluene interface morphology.

    表 1  实验试剂的物性参数(T = 20 ℃, P = 0.1 MPa)

    Table 1.  The physical parameters of experimental reagents (T = 20 ℃, P = 0.1 MPa).

    实验试剂ρ/kg·m–3µ/10–4Pa·s
    99810.04
    甲苯8675.86
    丙酮7903.26
    DownLoad: CSV
  • [1]

    Yao F, Chen Y P, Peterson G P 2013 Int. J. Heat Mass Transfer 64 418Google Scholar

    [2]

    Liu X D, Chen Y P, Shi M H 2013 Int. J. Therm. Sci. 65 224Google Scholar

    [3]

    Chen Y P, Cheng P 2005 Int. J. Heat Mass Transfer 32 931Google Scholar

    [4]

    Bodenschatz E, Pesch W, Ahlers G 2000 Annu. Rev. Fluid Mech. 32 709Google Scholar

    [5]

    王飞, 彭岚, 张全壮, 刘佳 2015 物理学报 64 140202Google Scholar

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202Google Scholar

    [6]

    翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar

    Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar

    [7]

    Schwabe D 1999 Adv. Space Res. 24 1347Google Scholar

    [8]

    Touazi O, Chénier E, Doumenc F, Guerrier B 2010 Int. J. Heat Mass Transfer 53 656Google Scholar

    [9]

    Chen J, Yang C, Mao Z S 2015 Eur. Phys. J. Spec. Top. 224 389Google Scholar

    [10]

    Bo Z, Mao S, Han Z J, Cen K F, Chen J H, Kostya O 2015 Chem. Soc. Rev. 44 2018

    [11]

    张婷, 施保昌, 柴振华 2015 物理学报 64 254701

    Zhang T, Shi B C, Chai Z H 2015 Acta Phys. Sin. 64 254701

    [12]

    郑连存, 盛晓艳, 张欣欣 2006 物理学报 55 5298Google Scholar

    Zheng L C, Sheng X Y, Zhang X X 2006 Acta Phys. Sin. 55 5298Google Scholar

    [13]

    Kline J L, Hager J D 2016 Matter Radiat. Extremes 2 16

    [14]

    Dong S X, Han W, Liu M F, Zhang Z W, Li B, Ge L Q 2016 Colloids Surf. A 509 32Google Scholar

    [15]

    Bai L, Zhao S F, Fu Y H, Cheng Y 2016 Biochem. Eng. J. 298 281

    [16]

    Sun Z F 2012 Chem. Eng. Sci. 68 579Google Scholar

    [17]

    Liu C, Zeng A, Yuan X, Yu G 2008 Chem. Eng. Res. Des. 86 201Google Scholar

    [18]

    Alvarez-Herrera C, Moreno-Hernández D, Barrientos-García B, Guerrero-Viramontes J A 2005 Opt. Laser Technol. 41 233

    [19]

    Piekarska W, Kubiak M 2013 Appl. Math. Modell. 37 2051Google Scholar

    [20]

    Szymczyk J A 1991 Can. J. Chem. Eng. 69 1233

    [21]

    Okhotsimskii A, Hozawa M 1998 Chem. Eng. Sci. 53 2547Google Scholar

    [22]

    王勇, 张泽廷 2002 北京化工大学学报 29 11Google Scholar

    Wang Y, Zhang Z T 2002 J. Beijing Univ. Chem. Technol. 29 11Google Scholar

    [23]

    Sun Z F, Yu K T, S Y W, Miao Y Z 2002 Ind. Eng. Chem. Res. 41 1905Google Scholar

    [24]

    沙勇, 李樟云, 林芬芬, 吐芬, 肖宗源, 叶李艺 2010 化工学报 61 844

    Sha Y, Li Z Y, Lin F F, Tu F, Xiao Z Y, Ye L Y 2010 J. Chem. Ind. Eng. 61 844

    [25]

    Orell A, Westwater J W 1961 AlChE J. 8 350

    [26]

    Zhang S H, Wang Z M, Su Y F 1990 Chem. Eng. Res. Des. 68 84

    [27]

    Guzun-Stoica A, Kurzeluk M, Floarea O 2000 Chem. Eng. Sci. 55 3813Google Scholar

    [28]

    Kostarev K G, Shmyrov A V, Zuev A L, Viviani A 2011 Exp. Fluids 51 457Google Scholar

    [29]

    Chen Y, Cheng P 2005 Int. Commun. Heat Mass Transfer 32 175Google Scholar

    [30]

    Agble D, Mendes-Tatsis M A 2000 Int. J. Heat Mass Transfer 43 1025Google Scholar

    [31]

    Shi Y, Kerstin E 2007 Chin. J. Chem. Eng. 15 748Google Scholar

    [32]

    Chen Y P, Liu X D, Shi M H 2013 Appl. Phys. Lett. 102 051609Google Scholar

    [33]

    Chen Y P, Liu X D, Zhao Y J 2015 Appl. Phys. Lett. 106 141601Google Scholar

    [34]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42Google Scholar

    [35]

    Sharp D H 1984 Physica D 12 3Google Scholar

    [36]

    Roberts M S, Jacobs J W 2015 J. Fluid Mech. 787 50

    [37]

    胡楠, 张会书, 傅强, 李陆星, 袁希钢 2016 化工学报 68 584

    Hu L, Zhang H S, Fu Q, Li L X, Yuan X G 2016 J. Chem. Ind. Eng. 68 584

    [38]

    Puthenveettil B A, Arakeri J H 2005 J. Fluid Mech. 542 217Google Scholar

    [39]

    Yang C, Tartaglino U, Persson B N 2006 J. Phys. Rev. Lett. 97 11

  • [1] Wang Meng-Sha, Xu Qiang, Nie Teng-Fei, Luo Xin-Yi, Guo Lie-Jin. Effect of electrolyte concentration on bubble evolution and mass transfer characteristics on surface of photoelectrode. Acta Physica Sinica, 2024, 73(18): 188201. doi: 10.7498/aps.73.20240533
    [2] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [3] Tang Xiu-Xing, Chen Hong-Yue, Wang Jing-Jing, Wang Zhi-Jun, Zang Du-Yang. Marangoni effect of surfactant droplet in transition boiling and formation of secondary droplet. Acta Physica Sinica, 2023, 72(19): 196801. doi: 10.7498/aps.72.20230919
    [4] Li Chun-Xi, Cheng Ran, Ye Xue-Min. Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics. Acta Physica Sinica, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [5] Zhao Wen-Jing, Wang Jin, Qin Wei-Guang, Ji Wen-Jie, Lan Ding, Wang Yu-Ren. Liquid-liquid-driven spreading process based on Marangoni effect. Acta Physica Sinica, 2021, 70(18): 184701. doi: 10.7498/aps.70.20210485
    [6] Ning Li-Zhong, Zhang Ke, Ning Bi-Bo, Liu Shuang, Tian Wei-Li. Convection partition and dynamics in inclined Poiseuille-Rayleigh-Bénard flow. Acta Physica Sinica, 2020, 69(12): 124401. doi: 10.7498/aps.69.20191941
    [7] Li Zhi-Hong, Ding Zhao, Tang Jia-Wei, Wang Yi, Luo Zi-Jiang, Ma Ming-Ming, Huang Yan-Bin, Zhang Zhen-Dong, Guo Xiang. Effect of Ga droplet deposition rate on morphology of concentric quantum double rings. Acta Physica Sinica, 2019, 68(18): 183601. doi: 10.7498/aps.68.20190615
    [8] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [9] Cai Ji-Xing, Guo Ming, Qu Xu, Li He, Jin Guang-Yong. Gas dynamics and combustion wave expanding velocity of laser induced plasma. Acta Physica Sinica, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [10] Pan Xiao, Ju Huan-Xin, Feng Xue-Fei, Fan Qi-Tang, Wang Chia-Hsin, Yang Yaw-Wen, Zhu Jun-Fa. Surface morphology of F8BT films and interface structures and reactions of Al on F8BT films. Acta Physica Sinica, 2015, 64(7): 077304. doi: 10.7498/aps.64.077304
    [11] Wang Fei, Peng Lan, Zhang Quan-Zhuang, Liu Jia. Effect of horizontal temperature difference on Marangoni-thermocapillary convection in a shallow annular pool. Acta Physica Sinica, 2015, 64(14): 140202. doi: 10.7498/aps.64.140202
    [12] Ning Li-Zhong, Wang Na, Yuan Zhe, Li Kai-Ji, Wang Zhuo-Yun. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture. Acta Physica Sinica, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [13] Chen Shu-Ying, Wang Hai-Dou, Xu Bin-Shi, Kang Jia-Jie. Investigation on the bonding behavior of the interface within the supersonic plasma sprayed coating system based on the fractal theory. Acta Physica Sinica, 2014, 63(15): 156801. doi: 10.7498/aps.63.156801
    [14] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [15] Zheng Xiao-Qing, Yang Yang, Sun De-Yan. Atomistic characterization of a modeled binary ordered alloy solid-liquid interface. Acta Physica Sinica, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [16] Zhang Min-Liang, Tian Yu, Jiang Ji-Le, Meng Yong-Gang, Wen Shi-Zhu. Enhancing compressive strength of electrorheological fluid by patterning the electrode. Acta Physica Sinica, 2009, 58(12): 8394-8399. doi: 10.7498/aps.58.8394
    [17] JIN WEI-QING, HIROSHI KOMATSU. AN EXPERIMENTAL METHOD OF MEASURING THE CRYSTALLIZATION FRONT TEMPERATURE. Acta Physica Sinica, 1985, 34(9): 1166-1172. doi: 10.7498/aps.34.1166
    [18] CHEN SHI-GANG, WANG YOU-QIN. PHENOMENON OF WAVE-LENGTH INCREASE IN RAYLEIGH-BéNARD CONVECTION AND CRITERION OF MAXIMUM ENTROPY PRODUCTION. Acta Physica Sinica, 1983, 32(2): 209-215. doi: 10.7498/aps.32.209
    [19] TU XIANG-ZHENG. TEMPERATURE GRADIENT LIQUID PHASE EPITAXY UNDER A STEADY NATURAL CONVECTION FLOW. Acta Physica Sinica, 1982, 31(1): 78-89. doi: 10.7498/aps.31.78
    [20] . Acta Physica Sinica, 1975, 24(1): 12-20. doi: 10.7498/aps.24.12
Metrics
  • Abstract views:  9931
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  05 July 2018
  • Accepted Date:  19 January 2019
  • Available Online:  23 March 2019
  • Published Online:  05 April 2019

/

返回文章
返回