Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Water and mass transport in low-dimensional confined structures

Zhang Xi-Qi Wen Li-Ping Jiang Lei

Citation:

Water and mass transport in low-dimensional confined structures

Zhang Xi-Qi, Wen Li-Ping, Jiang Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Water and mass transport in low-dimensional confined structures is of great importance in solving many challenging problems in interface chemistry and fluid mechanics,and presents versatile applications including mass transport,catalysis,chemical reaction,and nanofabrication.Recent achievements of water and mass transport in low-dimensional confined structures are summarized.Water flow confined in nanochannels with different wettability reveals the viscosity in the interface region increases as the contact angle decreases,whereas the flow capacity of confined water increases as the contact angle increases.Small difference in the nanochannel size has a big effect on the confined water flow,especially for nanochannels with a diameter smaller than 10 nm.The phenomena of ultrafast mass transport are universal in the nanochannels with smaller diameter (<10 nm),e.g.,ultrafast ionic transport across the biological and artificial ionic channel;ultrafast water flow through aligned carbon nanotube (CNT) membrane;ultrafast water permeation through GO membranes with hydrophilic end-group.From the classical hydrodynamics,the penetration barrier in such a small channel in both biological and artificial systems is huge,which is contradictory with the actual phenomena.Thus,we propose a concept of quantum-confined superfluid (QSF) to understand this ultrafast fluid transport in nanochannels.Molecular dynamic simulations of water confined in 1D nanochannel of CNTs (with diameter of 0.81 nm) and 2D nanochannel of graphene (two graphene layers distance <2 nm) demonstrate ordered chain of water molecules and pulse-like transmission of water through the channel,further provide proof for the QSF concept.Reversible switching of water wettability in the nanochannel via external stimuli (temperature and voltage) are presented,raising the temperature causes water wettability switching from hydrophilic to hydrophobic state,while increasing the voltage induces water wettability change from hydrophobic to hydrophilic state.The ultrafast liquid transport performance promotes the application of nanochannels in separation.There exist an upper limit for the surface tension of the liquid (≈ 180mN/m) below which the nanochannels of CNTs can be wetting.Then,we summarized versatile applications of low-dimensional confined structures in catalysis,chemical reaction,nanofabrication,and battery.Despite considerable advances over the last few decades,many challenging issues on water and mass transport in low-dimensional confined structures are still unresolved.The biggest obstacle is focused on understanding the physical origin of the non-classical behavior of liquid under confinement.In this situation,our proposed QSF concept will provide new ideas for the fluidic behavior in the nanochannels,and the introduction of QSF concept might create QSF-based chemistry.By imitating enzyme synthesis,the reactant molecules can be arranged in a certain order,and the reaction barrier will be greatly reduced to achieve highly efficient and selective chemical synthesis.Some previous works including organic reaction and polymeric synthesis have approached the example of QSF-like chemical reactions.On the other hand,the advances in nanomechanical techniques such as surface forces apparatus,atomic force microscope,and sum-frequency vibrational spectroscopy will provide useful experimental approaches to understand the mechanism of water and mass transport in low-dimensional confined structures,and promote wider application of nanoconfined structures.
    [1]

    Meinzer F C, Clearwater M J, Goldstein G 2001 Environ. Exp. Bot. 45 239

    [2]

    von Caemmerer S, Farquhar G D 1981 Planta 153 376

    [3]

    Preston G M, Carroll T P, Guggino W B, Agre P 1992 Science 256 385

    [4]

    MacKinnon R 2004 Angew. Chem. Int. Ed. 43 4265

    [5]

    Keynes R D, Martins-Ferreira H 1953 J. Physiol. 119 315

    [6]

    Jirage K B, Hulteen J C, Martin C R 1997 Science 278 655

    [7]

    Lee S B, Mitchell D T, Trofin L, Nevanen T K, Söderlund H, Martin C R 2002 Science 296 2198

    [8]

    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X 2007 Nat. Mater. 6 507

    [9]

    Chen Z, Guan Z, Li M, Yang Q, Li C 2011 Angew. Chem. Int. Ed. 50 4913

    [10]

    Zhang S, Zhang B, Liang H, Liu Y, Qiao Y, Qin Y 2018 Angew. Chem. Int. Ed. 57 1091

    [11]

    Castillejos E, Debouttière P J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P 2009 Angew. Chem. Int. Ed. 48 2529

    [12]

    Martin C R 1994 Science 266 1961

    [13]

    Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159

    [14]

    Chen W, Pan X, Willinger M G, Su D S, Bao X 2006 J. Am. Chem. Soc. 128 3136

    [15]

    Miners S A, Rance G A, Khlobystov A N 2016 Chem. Soc. Rev. 45 4727

    [16]

    Martin C R 1996 Chem. Mater. 8 1739

    [17]

    García-Gutiérrez M C, Linares A, Hernández J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472

    [18]

    Jongh P E D, Eggenhuisen T M 2013 Adv. Mater. 25 6672

    [19]

    Dujardin E, Ebbesen T W, Hiura H, Tanigaki K 1994 Science 265 1850

    [20]

    Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80

    [21]

    Chen J Y, Kutana A, Collier C P, Giapis K P 2005 Science 310 1480

    [22]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [23]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [24]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [25]

    Whitby M, Quirke N 2007 Nat. Nanotechnol. 2 87

    [26]

    Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L 2016 Nature 537 210

    [27]

    Zeng H, Wu K, Cui X, Chen Z 2017 Nano Today 16 7

    [28]

    Huang D M, Sendner C, Horinek D, Netz R R, Bocquet L 2008 Phys. Rev. Lett. 101 226101

    [29]

    Thomas J A, McGaughey A J H 2009 Phys. Rev. Lett. 102 184502

    [30]

    Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374

    [31]

    Barber A H, Cohen S R, Wagner H D 2004 Phys. Rev. Lett. 92 186103

    [32]

    Cao D, Pang P, He J, Luo T, Park J H, Krstic P, Nuckolls C, Tang J, Lindsay S 2011 ACS Nano 5 3113

    [33]

    Gogotsi Y, Libera J A, Güvenç-Yazicioglu A, Megaridis C M 2001 Appl. Phys. Lett. 79 1021

    [34]

    Monthioux M 2002 Carbon 40 1809

    [35]

    Siria A, Poncharal P, Biance A L, Fulcrand R, Blase X, Purcell S T, Bocquet L 2013 Nature 494 455

    [36]

    Pham T, Fathalizadeh A, Shevitski B, Turner S, Aloni S, Zettl A 2016 Nano Lett. 16 320

    [37]

    Xiao K, Zhou Y, Kong X Y, Xie G, Li P, Zhang Z, Wen L, Jiang L 2016 ACS Nano 10 9703

    [38]

    Powell M R, Cleary L, Davenport M, Shea K J, Siwy Z S 2011 Nat. Nanotechnol. 6 798

    [39]

    Cepak V M, Martin C R 1999 Chem. Mater. 11 1363

    [40]

    Steinhart M, Murano S, Schaper A K, Ogawa T, Tsuji M, Gösele U, Weder C, Wendorff J H 2005 Adv. Funct. Mater. 15 1656

    [41]

    Mei S, Feng X, Jin Z 2011 Macromolecules 44 1615

    [42]

    Zhang M, Dobriyal P, Chen J T, Russell T P, Olmo J, Merry A 2006 Nano Lett. 6 1075

    [43]

    Smirnov S N, Vlassiouk I V, Lavrik N V 2011 ACS Nano 5 7453

    [44]

    Neek-Amal M, Peeters F M, Grigorieva I V, Geim A K 2016 ACS Nano 10 3685

    [45]

    Li X, Ren H, Wu W, Li H, Wang L, He Y, Wang J, Zhou Y 2015 Sci. Rep. 5 15190

    [46]

    Moeremans B, Cheng H W, Hu Q, Garces H F, Padture N P, Renner F U, Valtiner M 2016 Nat. Commun. 7 12693

    [47]

    Bampoulis P, Witteveen J P, Kooij E S, Lohse D, Poelsema B, Zandvliet H J W 2016 ACS Nano 10 6762

    [48]

    Raviv U, Laurat P, Klein J 2001 Nature 413 51

    [49]

    Raviv U, Klein J 2002 Science 297 1540

    [50]

    Leng Y, Cummings P T 2005 Phys. Rev. Lett. 94 026101

    [51]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [52]

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K 2012 Science 335 442

    [53]

    Liu J, Wang N, Yu L J, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L, Weitz D A, Zhao Y 2017 Nat. Commun. 8 2011

    [54]

    Lin D, Liu Y, Liang Z, Lee H W, Sun J, Wang H, Yan K, Xie J, Cui Y 2016 Nat. Nanotechnol. 11 626

    [55]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194

    [56]

    Soldano C 2015 Prog. Mater. Sci. 69 183

    [57]

    Liu Q, Zou R, Bando Y, Golberg D, Hu J 2015 Prog. Mater. Sci. 70 1

    [58]

    Zhou Y, Guo W, Jiang L 2014 Sci. China: Phys. Mech. Astron. 57 836

    [59]

    Holt J K 2009 Adv. Mater. 21 3542

    [60]

    Mattia D, Gogotsi Y 2008 Microfluid. Nanofluid. 5 289

    [61]

    Ye X R, Lin Y, Wang C, Wai C M 2003 Adv. Mater. 15 316

    [62]

    Tessonnier J P, Ersen O, Weinberg G, Pham-Huu C, Su D S, Schlögl R 2009 ACS Nano 3 2081

    [63]

    Zhang J, Müller J O, Zheng W, Wang D, Su D, Schlögl R 2008 Nano Lett. 8 2738

    [64]

    Baaziz W, Florea I, Moldovan S, Papaefthimiou V, Zafeiratos S, Begin-Colin S, Begin D, Ersen O, Pham-Huu C 2015 J. Mater. Chem. A 3 11203

    [65]

    Serp P, Castillejos E 2010 ChemCatChem 2 41

    [66]

    Liu X, Marangon I, Melinte G, Wilhelm C, Ménard-Moyon C, Pichon B P, Ersen O, Aubertin K, Baaziz W, Pham-Huu C, Bégin-Colin S, Bianco A, Gazeau F, Bégin D 2014 ACS Nano 8 11290

    [67]

    Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J C, Kornev K G 2005 Nano Lett. 5 879

    [68]

    Tuček J, Kemp K C, Kim K S, Zbořil R 2014 ACS Nano 8 7571

    [69]

    Ugarte D, Chatelain A, de Heer W A 1996 Science 274 1897

    [70]

    Sloan J, Novotny M C, Bailey S R, Brown G, Xu C, Williams V C, Friedrichs S, Flahaut E, Callender R L, York A P E, Coleman K S, Green M L H, Dunin-Borkowski R E, Hutchison J L 2000 Chem. Phys. Lett. 329 61

    [71]

    Chen S, Wu G, Sha M, Huang S 2007 J. Am. Chem. Soc. 129 2416

    [72]

    Yamada Y, Takahashi K, Takata Y, Sefiane K 2016 Langmuir 32 7064

    [73]

    Mattia D, Bau H H, Gogotsi Y 2006 Langmuir 22 1789

    [74]

    Mattia D, Rossi M P, Kim B M, Korneva G, Bau H H, Gogotsi Y 2006 J. Phys. Chem. B 110 9850

    [75]

    Zhu Z, Zheng S, Peng S, Zhao Y, Tian Y 2017 Adv. Mater. 29 1703120

    [76]

    Ross F M 2015 Science 350 aaa9886

    [77]

    Israelachvili J, Min Y, Akbulut M, Alig A, Carver G, Greene W, Kristiansen K, Meyer E, Pesika N, Rosenberg K, Zeng H 2010 Rep. Prog. Phys. 73 036601

    [78]

    Schäffel D, Koynov K, Vollmer D, Butt H J, Schönecker C 2016 Phys. Rev. Lett. 116 134501

    [79]

    Kondrat S, Wu P, Qiao R, Kornyshev A A 2014 Nat. Mater. 13 387

    [80]

    Liu M, Wang S, Jiang L 2017 Nat. Rev. Mater. 2 17036

    [81]

    Fang R, Liu M, Liu H, Jiang L 2018 Adv. Mater. Interfaces 5 1701176

    [82]

    Kapitza P 1938 Nature 141 74

    [83]

    Allen J F, Misener A D 1938 Nature 141 75

    [84]

    Allen J F, Misener A D 1939 Proc. R. Soc. Lond. A 172 467

    [85]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [86]

    Sansom M S P, Shrivastava I H, Bright J N, Tate J, Capener C E, Biggin P C 2002 Biochim. Biophys. Acta: Biomembr. 1565 294

    [87]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [88]

    Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R 1998 Science 280 69

    [89]

    MacKinnon R 2004 Angew. Chem. Int. Ed. 43 4265

    [90]

    Shi C, He Y, Hendriks K, de Groot B L, Cai X, Tian C, Lange A, Sun H 2018 Nat. Commun. 9 717

    [91]

    Tadross M R, Dick I E, Yue D T 2008 Cell 133 1228

    [92]

    Wen L, Zhang X, Tian Y, Jiang L 2018 Sci. China: Mater. 61 1027

    [93]

    Zhang X, Liu H, Jiang L 2018 Adv. Mater. 180 4508

    [94]

    Chen S, Tang Y, Zhan K, Sun D, Hou X 2018 Nano Today 20 84

    [95]

    Zhu Y, Zhan K, Hou X 2018 ACS Nano 12 908

    [96]

    Hou X 2016 Adv. Mater. 28 7049

    [97]

    Zhang H, Hou X, Hou J, Zeng L, Tian Y, Li L, Jiang L 2015 Adv. Funct. Mater. 25 1102

    [98]

    Zhang H, Tian Y, Hou J, Hou X, Hou G, Ou R, Wang H, Jiang L 2015 ACS Nano 9 12264

    [99]

    Hou X, Zhang H, Jiang L 2012 Angew. Chem. Int. Ed. 51 5296

    [100]

    Xiao K, Xie G, Zhang Z, Kong X Y, Liu Q, Li P, Wen L, Jiang L 2016 Adv. Mater. 28 3345

    [101]

    Duan C, Majumdar A 2010 Nat. Nanotechnol. 5 848

    [102]

    Maier J 2005 Nat. Mater. 4 805

    [103]

    Yang X, Cheng C, Wang Y, Qiu L, Li D 2013 Science 341 534

    [104]

    Ji X, Lee K T, Nazar L F 2009 Nat. Mater. 8 500

    [105]

    Pan Y, Zhou Y, Zhao Q, Dou Y, Chou S, Cheng F, Chen J, Liu H K, Jiang L, Dou S X 2017 Nano Energy 33 205

    [106]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752

    [107]

    Wu K, Chen Z, Li J, Li X, Xu J, Dong X 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3358

    [108]

    Tian Y, Jiang L 2013 Nat. Mater. 12 291

    [109]

    Vogler E A 1998 Adv. Colloid Interface Sci. 74 69

    [110]

    Chen Q, Meng L, Li Q, Wang D, Guo W, Shuai Z, Jiang L 2011 Small 7 2225

    [111]

    Yang Q, Su Y, Chi C, Cherian C T, Huang K, Kravets V G, Wang F C, Zhang J C, Pratt A, Grigorenko A N, Guinea F, Geim A K, Nair R R 2017 Nat. Mater. 16 1198

    [112]

    Zhu Z, Tian Y, Chen Y, Gu Z, Wang S, Jiang L 2017 Angew. Chem. Int. Ed. 129 5814

    [113]

    Bolhuis P G, Chandler D 2000 J. Chem. Phys. 113 8154

    [114]

    Kalra A, Garde S, Hummer G 2003 Proc. Natl. Acad. Sci. U. S. A. 100 10175

    [115]

    Pascal T A, Goddard W A, Jung Y 2011 Proc. Natl. Acad. Sci. U. S. A. 108 11794

    [116]

    Mashl R J, Joseph S, Aluru N R, Jakobsson E 2003 Nano Lett. 3 589

    [117]

    Chaban V V, Prezhdo O V 2011 ACS Nano 5 5647

    [118]

    Chaban V V, Prezhdo V V, Prezhdo O V 2012 ACS Nano 6 2766

    [119]

    Melillo M, Zhu F, Snyder M A, Mittal J 2011 J. Phys. Chem. Lett. 2 2978

    [120]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [121]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [122]

    Thomas J A, McGaughey A J H 2008 Nano Lett. 8 2788

    [123]

    Chen X, Cao G, Han A, Punyamurtula V K, Liu L, Culligan P J, Kim T, Qiao Y 2008 Nano Lett. 8 2988

    [124]

    Trick J L, Song C, Wallace E J, Sansom M S P 2017 ACS Nano 11 1840

    [125]

    Bratko D, Daub C D, Leung K, Luzar A 2007 J. Am. Chem. Soc. 129 2504

    [126]

    Lu D 2013 Phys. Chem. Chem. Phys. 15 14447

    [127]

    Chaban V V, Prezhdo O V 2014 ACS Nano 8 8190

    [128]

    Schebarchov D, Hendy S C 2008 Nano Lett. 8 2253

    [129]

    Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Lett. 4 989

    [130]

    Naguib N, Ye H, Gogotsi Y, Yazicioglu A G, Megaridis C M, Yoshimura M 2004 Nano Lett. 4 2237

    [131]

    Ohba T 2014 Angew. Chem. Int. Ed. 53 8032

    [132]

    Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O, Burnham C J 2004 Phys. Rev. Lett. 93 035503

    [133]

    Tomo Y, Askounis A, Ikuta T, Takata Y, Sefiane K, Takahashi K 2018 Nano Lett. 18 1869

    [134]

    Lech F J, Wierenga P A, Gruppen H, Meinders M B J 2015 Langmuir 31 2777

    [135]

    Matsuda K, Hibi T, Kadowaki H, Kataura H, Maniwa Y 2006 Phys. Rev. B 74 073415

    [136]

    Rant U 2011 Nat. Nanotechnol. 6 759

    [137]

    Xie G, Li P, Zhao Z, Zhu Z, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L 2018 J. Am. Chem. Soc. 140 4552

    [138]

    Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565

    [139]

    Liu H, He J, Tang J, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C 2010 Science 327 64

    [140]

    Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I, Shnyrova A V, Cho K R, Munoz D, Wang Y M, Grigoropoulos C P, Ajo-Franklin C M, Frolov V A, Noy A 2014 Nature 514 612

    [141]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

    [142]

    Guo S, Meshot E R, Kuykendall T, Cabrini S, Fornasiero F 2015 Adv. Mater. 27 5726

    [143]

    Mattia D, Leese H, Lee K P 2015 J. Membr. Sci. 475 266

    [144]

    Whitby M, Cagnon L, Thanou M, Quirke N 2008 Nano Lett. 8 2632

    [145]

    Qin X, Yuan Q, Zhao Y, Xie S, Liu Z 2011 Nano Lett. 11 2173

    [146]

    Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X Y, Xie G, Zhang Z, Bo Z, Jiang L 2015 J. Am. Chem. Soc. 137 11976

    [147]

    Xie G, Xiao K, Zhang Z, Kong X Y, Liu Q, Li P, Wen L, Jiang L 2015 Angew. Chem. Int. Ed. 54 13664

    [148]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A 2017 Science 357 792

    [149]

    Pennathur S, Santiago J G 2005 Anal. Chem. 77 6772

    [150]

    Si W, Chen L, Hu X B, Tang G, Chen Z, Hou J L, Li Z T 2011 Angew. Chem. 123 12772

    [151]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [152]

    Prakash S, Piruska A, Gatimu E N, Bohn P W, Sweedler J V, Shannon M A 2008 IEEE Sens. J. 8 441

    [153]

    Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 3163

    [154]

    Xiong W, Liu H, Zhou Y, Ding Y, Zhang X, Jiang L 2016 ACS Appl. Mater. Interfaces 8 12534

    [155]

    Zhang P, Zhang F, Zhao C, Wang S, Liu M, Jiang L 2016 Angew. Chem. Int. Ed. 128 3679

    [156]

    Granick S 1991 Science 253 1374

    [157]

    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K, Gomila G, Novoselov K S, Geim A K 2018 Science 360 1339

    [158]

    Jiang X, Gao H, Zhang X, Pang J, Li Y, Li K, Wu Y, Li S, Zhu J, Wei Y, Jiang L 2018 Nat. Commun. 9 3799

    [159]

    Chang L, Zhang X, Ding Y, Liu H, Liu M, Jiang L 2018 ACS Appl. Mater. Interfaces 10 29010

    [160]

    Sha M, Wu G, Liu Y, Tang Z, Fang H 2009 J. Phys. Chem. C 113 4618

    [161]

    Huang K, Liu G, Shen J, Chu Z, Zhou H, Gu X, Jin W, Xu N 2015 Adv. Funct. Mater. 25 5809

    [162]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979

    [163]

    Han Y, Xu Z, Gao C 2013 Adv. Funct. Mater. 23 3693

    [164]

    Mi B 2014 Science 343 740

    [165]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotech. 10 459

    [166]

    Liu H, Wang H, Zhang X 2015 Adv. Mater. 27 249

    [167]

    Chen W, Fan Z, Pan X, Bao X 2008 J. Am. Chem. Soc. 130 9414

    [168]

    Guan Z, Lu S, Li C 2014 J. Catal. 311 1

    [169]

    Gao Z, Dong M, Wang G, Sheng P, Wu Z, Yang H, Zhang B, Wang G, Wang J, Qin Y 2015 Angew. Chem. Int. Ed. 54 9006

    [170]

    Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y 2016 Angew. Chem. Int. Ed. 55 7081

    [171]

    Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, Chen S, Tong X, Wang M, Zheng Z, Qin Y 2017 Angew. Chem. Int. Ed. 56 816

    [172]

    Kageyama K, Tamazawa J I, Aida T 1999 Science 285 2113

    [173]

    Feng K, Zhang R Y, Wu L Z, Tu B, Peng M L, Zhang L P, Zhao D, Tung C H 2006 J. Am. Chem. Soc. 128 14685

    [174]

    Trépanier M, Tavasoli A, Dalai A K, Abatzoglou N 2009 Appl. Catal. A 353 193

    [175]

    Yue H, Zhao Y, Zhao S, Wang B, Ma X, Gong J 2013 Nat. Commun. 4 2339

    [176]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X 2012 Angew. Chem. Int. Ed. 51 4856

    [177]

    Tung C H, Wang H, Ying Y M 1998 J. Am. Chem. Soc. 120 5179

    [178]

    Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y 2014 Nat. Commun. 5 3960

    [179]

    Tung C H, Wu L Z, Yuan Z Y, Su N 1998 J. Am. Chem. Soc. 120 11594

    [180]

    Tung C H, Guan J Q 1998 J. Am. Chem. Soc. 120 11874

    [181]

    Chu A, Cook J, Heesom R J R, Hutchison J L, Green M L H, Sloan J 1996 Chem. Mater. 8 2751

    [182]

    Zhou W, Li T, Wang J, Qu Y, Pan K, Xie Y, Tian G, Wang L, Ren Z, Jiang B, Fu H 2014 Nano Res. 7 731

    [183]

    Fang J, Zhang L, Li J, Lu L, Ma C, Cheng S, Li Z, Xiong Q, You H 2018 Nat. Commun. 9 521

    [184]

    Cauda V, Stassi S, Bejtka K, Canavese G 2013 ACS Appl. Mater. Interfaces 5 6430

    [185]

    Lee C W, Wei T H, Chang C W, Chen J T 2012 Macromol. Rapid Commun. 33 1381

    [186]

    Garcia-Gutierrez M C, Linares A, Martin-Fabiani I, Hernandez J J, Soccio M, Rueda D R, Ezquerra T A, Reynolds M 2013 Nanoscale 5 6006

    [187]

    Chen J, Wu D, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J 2015 Nano Energy 13 267

  • [1]

    Meinzer F C, Clearwater M J, Goldstein G 2001 Environ. Exp. Bot. 45 239

    [2]

    von Caemmerer S, Farquhar G D 1981 Planta 153 376

    [3]

    Preston G M, Carroll T P, Guggino W B, Agre P 1992 Science 256 385

    [4]

    MacKinnon R 2004 Angew. Chem. Int. Ed. 43 4265

    [5]

    Keynes R D, Martins-Ferreira H 1953 J. Physiol. 119 315

    [6]

    Jirage K B, Hulteen J C, Martin C R 1997 Science 278 655

    [7]

    Lee S B, Mitchell D T, Trofin L, Nevanen T K, Söderlund H, Martin C R 2002 Science 296 2198

    [8]

    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X 2007 Nat. Mater. 6 507

    [9]

    Chen Z, Guan Z, Li M, Yang Q, Li C 2011 Angew. Chem. Int. Ed. 50 4913

    [10]

    Zhang S, Zhang B, Liang H, Liu Y, Qiao Y, Qin Y 2018 Angew. Chem. Int. Ed. 57 1091

    [11]

    Castillejos E, Debouttière P J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P 2009 Angew. Chem. Int. Ed. 48 2529

    [12]

    Martin C R 1994 Science 266 1961

    [13]

    Tsang S C, Chen Y K, Harris P J F, Green M L H 1994 Nature 372 159

    [14]

    Chen W, Pan X, Willinger M G, Su D S, Bao X 2006 J. Am. Chem. Soc. 128 3136

    [15]

    Miners S A, Rance G A, Khlobystov A N 2016 Chem. Soc. Rev. 45 4727

    [16]

    Martin C R 1996 Chem. Mater. 8 1739

    [17]

    García-Gutiérrez M C, Linares A, Hernández J J, Rueda D R, Ezquerra T A, Poza P, Davies R J 2010 Nano Lett. 10 1472

    [18]

    Jongh P E D, Eggenhuisen T M 2013 Adv. Mater. 25 6672

    [19]

    Dujardin E, Ebbesen T W, Hiura H, Tanigaki K 1994 Science 265 1850

    [20]

    Wang H J, Xi X K, Kleinhammes A, Wu Y 2008 Science 322 80

    [21]

    Chen J Y, Kutana A, Collier C P, Giapis K P 2005 Science 310 1480

    [22]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [23]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [24]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Noca F, Koumoutsakos P 2001 Nano Lett. 1 697

    [25]

    Whitby M, Quirke N 2007 Nat. Nanotechnol. 2 87

    [26]

    Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L 2016 Nature 537 210

    [27]

    Zeng H, Wu K, Cui X, Chen Z 2017 Nano Today 16 7

    [28]

    Huang D M, Sendner C, Horinek D, Netz R R, Bocquet L 2008 Phys. Rev. Lett. 101 226101

    [29]

    Thomas J A, McGaughey A J H 2009 Phys. Rev. Lett. 102 184502

    [30]

    Yuan Q, Zhao Y P 2009 J. Am. Chem. Soc. 131 6374

    [31]

    Barber A H, Cohen S R, Wagner H D 2004 Phys. Rev. Lett. 92 186103

    [32]

    Cao D, Pang P, He J, Luo T, Park J H, Krstic P, Nuckolls C, Tang J, Lindsay S 2011 ACS Nano 5 3113

    [33]

    Gogotsi Y, Libera J A, Güvenç-Yazicioglu A, Megaridis C M 2001 Appl. Phys. Lett. 79 1021

    [34]

    Monthioux M 2002 Carbon 40 1809

    [35]

    Siria A, Poncharal P, Biance A L, Fulcrand R, Blase X, Purcell S T, Bocquet L 2013 Nature 494 455

    [36]

    Pham T, Fathalizadeh A, Shevitski B, Turner S, Aloni S, Zettl A 2016 Nano Lett. 16 320

    [37]

    Xiao K, Zhou Y, Kong X Y, Xie G, Li P, Zhang Z, Wen L, Jiang L 2016 ACS Nano 10 9703

    [38]

    Powell M R, Cleary L, Davenport M, Shea K J, Siwy Z S 2011 Nat. Nanotechnol. 6 798

    [39]

    Cepak V M, Martin C R 1999 Chem. Mater. 11 1363

    [40]

    Steinhart M, Murano S, Schaper A K, Ogawa T, Tsuji M, Gösele U, Weder C, Wendorff J H 2005 Adv. Funct. Mater. 15 1656

    [41]

    Mei S, Feng X, Jin Z 2011 Macromolecules 44 1615

    [42]

    Zhang M, Dobriyal P, Chen J T, Russell T P, Olmo J, Merry A 2006 Nano Lett. 6 1075

    [43]

    Smirnov S N, Vlassiouk I V, Lavrik N V 2011 ACS Nano 5 7453

    [44]

    Neek-Amal M, Peeters F M, Grigorieva I V, Geim A K 2016 ACS Nano 10 3685

    [45]

    Li X, Ren H, Wu W, Li H, Wang L, He Y, Wang J, Zhou Y 2015 Sci. Rep. 5 15190

    [46]

    Moeremans B, Cheng H W, Hu Q, Garces H F, Padture N P, Renner F U, Valtiner M 2016 Nat. Commun. 7 12693

    [47]

    Bampoulis P, Witteveen J P, Kooij E S, Lohse D, Poelsema B, Zandvliet H J W 2016 ACS Nano 10 6762

    [48]

    Raviv U, Laurat P, Klein J 2001 Nature 413 51

    [49]

    Raviv U, Klein J 2002 Science 297 1540

    [50]

    Leng Y, Cummings P T 2005 Phys. Rev. Lett. 94 026101

    [51]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [52]

    Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K 2012 Science 335 442

    [53]

    Liu J, Wang N, Yu L J, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L, Weitz D A, Zhao Y 2017 Nat. Commun. 8 2011

    [54]

    Lin D, Liu Y, Liang Z, Lee H W, Sun J, Wang H, Yan K, Xie J, Cui Y 2016 Nat. Nanotechnol. 11 626

    [55]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194

    [56]

    Soldano C 2015 Prog. Mater. Sci. 69 183

    [57]

    Liu Q, Zou R, Bando Y, Golberg D, Hu J 2015 Prog. Mater. Sci. 70 1

    [58]

    Zhou Y, Guo W, Jiang L 2014 Sci. China: Phys. Mech. Astron. 57 836

    [59]

    Holt J K 2009 Adv. Mater. 21 3542

    [60]

    Mattia D, Gogotsi Y 2008 Microfluid. Nanofluid. 5 289

    [61]

    Ye X R, Lin Y, Wang C, Wai C M 2003 Adv. Mater. 15 316

    [62]

    Tessonnier J P, Ersen O, Weinberg G, Pham-Huu C, Su D S, Schlögl R 2009 ACS Nano 3 2081

    [63]

    Zhang J, Müller J O, Zheng W, Wang D, Su D, Schlögl R 2008 Nano Lett. 8 2738

    [64]

    Baaziz W, Florea I, Moldovan S, Papaefthimiou V, Zafeiratos S, Begin-Colin S, Begin D, Ersen O, Pham-Huu C 2015 J. Mater. Chem. A 3 11203

    [65]

    Serp P, Castillejos E 2010 ChemCatChem 2 41

    [66]

    Liu X, Marangon I, Melinte G, Wilhelm C, Ménard-Moyon C, Pichon B P, Ersen O, Aubertin K, Baaziz W, Pham-Huu C, Bégin-Colin S, Bianco A, Gazeau F, Bégin D 2014 ACS Nano 8 11290

    [67]

    Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J C, Kornev K G 2005 Nano Lett. 5 879

    [68]

    Tuček J, Kemp K C, Kim K S, Zbořil R 2014 ACS Nano 8 7571

    [69]

    Ugarte D, Chatelain A, de Heer W A 1996 Science 274 1897

    [70]

    Sloan J, Novotny M C, Bailey S R, Brown G, Xu C, Williams V C, Friedrichs S, Flahaut E, Callender R L, York A P E, Coleman K S, Green M L H, Dunin-Borkowski R E, Hutchison J L 2000 Chem. Phys. Lett. 329 61

    [71]

    Chen S, Wu G, Sha M, Huang S 2007 J. Am. Chem. Soc. 129 2416

    [72]

    Yamada Y, Takahashi K, Takata Y, Sefiane K 2016 Langmuir 32 7064

    [73]

    Mattia D, Bau H H, Gogotsi Y 2006 Langmuir 22 1789

    [74]

    Mattia D, Rossi M P, Kim B M, Korneva G, Bau H H, Gogotsi Y 2006 J. Phys. Chem. B 110 9850

    [75]

    Zhu Z, Zheng S, Peng S, Zhao Y, Tian Y 2017 Adv. Mater. 29 1703120

    [76]

    Ross F M 2015 Science 350 aaa9886

    [77]

    Israelachvili J, Min Y, Akbulut M, Alig A, Carver G, Greene W, Kristiansen K, Meyer E, Pesika N, Rosenberg K, Zeng H 2010 Rep. Prog. Phys. 73 036601

    [78]

    Schäffel D, Koynov K, Vollmer D, Butt H J, Schönecker C 2016 Phys. Rev. Lett. 116 134501

    [79]

    Kondrat S, Wu P, Qiao R, Kornyshev A A 2014 Nat. Mater. 13 387

    [80]

    Liu M, Wang S, Jiang L 2017 Nat. Rev. Mater. 2 17036

    [81]

    Fang R, Liu M, Liu H, Jiang L 2018 Adv. Mater. Interfaces 5 1701176

    [82]

    Kapitza P 1938 Nature 141 74

    [83]

    Allen J F, Misener A D 1938 Nature 141 75

    [84]

    Allen J F, Misener A D 1939 Proc. R. Soc. Lond. A 172 467

    [85]

    Gasparini F M, Kimball M O, Mooney K P, Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009

    [86]

    Sansom M S P, Shrivastava I H, Bright J N, Tate J, Capener C E, Biggin P C 2002 Biochim. Biophys. Acta: Biomembr. 1565 294

    [87]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [88]

    Doyle D A, Cabral J M, Pfuetzner R A, Kuo A, Gulbis J M, Cohen S L, Chait B T, MacKinnon R 1998 Science 280 69

    [89]

    MacKinnon R 2004 Angew. Chem. Int. Ed. 43 4265

    [90]

    Shi C, He Y, Hendriks K, de Groot B L, Cai X, Tian C, Lange A, Sun H 2018 Nat. Commun. 9 717

    [91]

    Tadross M R, Dick I E, Yue D T 2008 Cell 133 1228

    [92]

    Wen L, Zhang X, Tian Y, Jiang L 2018 Sci. China: Mater. 61 1027

    [93]

    Zhang X, Liu H, Jiang L 2018 Adv. Mater. 180 4508

    [94]

    Chen S, Tang Y, Zhan K, Sun D, Hou X 2018 Nano Today 20 84

    [95]

    Zhu Y, Zhan K, Hou X 2018 ACS Nano 12 908

    [96]

    Hou X 2016 Adv. Mater. 28 7049

    [97]

    Zhang H, Hou X, Hou J, Zeng L, Tian Y, Li L, Jiang L 2015 Adv. Funct. Mater. 25 1102

    [98]

    Zhang H, Tian Y, Hou J, Hou X, Hou G, Ou R, Wang H, Jiang L 2015 ACS Nano 9 12264

    [99]

    Hou X, Zhang H, Jiang L 2012 Angew. Chem. Int. Ed. 51 5296

    [100]

    Xiao K, Xie G, Zhang Z, Kong X Y, Liu Q, Li P, Wen L, Jiang L 2016 Adv. Mater. 28 3345

    [101]

    Duan C, Majumdar A 2010 Nat. Nanotechnol. 5 848

    [102]

    Maier J 2005 Nat. Mater. 4 805

    [103]

    Yang X, Cheng C, Wang Y, Qiu L, Li D 2013 Science 341 534

    [104]

    Ji X, Lee K T, Nazar L F 2009 Nat. Mater. 8 500

    [105]

    Pan Y, Zhou Y, Zhao Q, Dou Y, Chou S, Cheng F, Chen J, Liu H K, Jiang L, Dou S X 2017 Nano Energy 33 205

    [106]

    Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R 2014 Science 343 752

    [107]

    Wu K, Chen Z, Li J, Li X, Xu J, Dong X 2017 Proc. Natl. Acad. Sci. U. S. A. 114 3358

    [108]

    Tian Y, Jiang L 2013 Nat. Mater. 12 291

    [109]

    Vogler E A 1998 Adv. Colloid Interface Sci. 74 69

    [110]

    Chen Q, Meng L, Li Q, Wang D, Guo W, Shuai Z, Jiang L 2011 Small 7 2225

    [111]

    Yang Q, Su Y, Chi C, Cherian C T, Huang K, Kravets V G, Wang F C, Zhang J C, Pratt A, Grigorenko A N, Guinea F, Geim A K, Nair R R 2017 Nat. Mater. 16 1198

    [112]

    Zhu Z, Tian Y, Chen Y, Gu Z, Wang S, Jiang L 2017 Angew. Chem. Int. Ed. 129 5814

    [113]

    Bolhuis P G, Chandler D 2000 J. Chem. Phys. 113 8154

    [114]

    Kalra A, Garde S, Hummer G 2003 Proc. Natl. Acad. Sci. U. S. A. 100 10175

    [115]

    Pascal T A, Goddard W A, Jung Y 2011 Proc. Natl. Acad. Sci. U. S. A. 108 11794

    [116]

    Mashl R J, Joseph S, Aluru N R, Jakobsson E 2003 Nano Lett. 3 589

    [117]

    Chaban V V, Prezhdo O V 2011 ACS Nano 5 5647

    [118]

    Chaban V V, Prezhdo V V, Prezhdo O V 2012 ACS Nano 6 2766

    [119]

    Melillo M, Zhu F, Snyder M A, Mittal J 2011 J. Phys. Chem. Lett. 2 2978

    [120]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [121]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [122]

    Thomas J A, McGaughey A J H 2008 Nano Lett. 8 2788

    [123]

    Chen X, Cao G, Han A, Punyamurtula V K, Liu L, Culligan P J, Kim T, Qiao Y 2008 Nano Lett. 8 2988

    [124]

    Trick J L, Song C, Wallace E J, Sansom M S P 2017 ACS Nano 11 1840

    [125]

    Bratko D, Daub C D, Leung K, Luzar A 2007 J. Am. Chem. Soc. 129 2504

    [126]

    Lu D 2013 Phys. Chem. Chem. Phys. 15 14447

    [127]

    Chaban V V, Prezhdo O V 2014 ACS Nano 8 8190

    [128]

    Schebarchov D, Hendy S C 2008 Nano Lett. 8 2253

    [129]

    Rossi M P, Ye H, Gogotsi Y, Babu S, Ndungu P, Bradley J C 2004 Nano Lett. 4 989

    [130]

    Naguib N, Ye H, Gogotsi Y, Yazicioglu A G, Megaridis C M, Yoshimura M 2004 Nano Lett. 4 2237

    [131]

    Ohba T 2014 Angew. Chem. Int. Ed. 53 8032

    [132]

    Kolesnikov A I, Zanotti J M, Loong C K, Thiyagarajan P, Moravsky A P, Loutfy R O, Burnham C J 2004 Phys. Rev. Lett. 93 035503

    [133]

    Tomo Y, Askounis A, Ikuta T, Takata Y, Sefiane K, Takahashi K 2018 Nano Lett. 18 1869

    [134]

    Lech F J, Wierenga P A, Gruppen H, Meinders M B J 2015 Langmuir 31 2777

    [135]

    Matsuda K, Hibi T, Kadowaki H, Kataura H, Maniwa Y 2006 Phys. Rev. B 74 073415

    [136]

    Rant U 2011 Nat. Nanotechnol. 6 759

    [137]

    Xie G, Li P, Zhao Z, Zhu Z, Kong X Y, Zhang Z, Xiao K, Wen L, Jiang L 2018 J. Am. Chem. Soc. 140 4552

    [138]

    Park H G, Jung Y 2014 Chem. Soc. Rev. 43 565

    [139]

    Liu H, He J, Tang J, Liu H, Pang P, Cao D, Krstic P, Joseph S, Lindsay S, Nuckolls C 2010 Science 327 64

    [140]

    Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli L R, Allen F I, Shnyrova A V, Cho K R, Munoz D, Wang Y M, Grigoropoulos C P, Ajo-Franklin C M, Frolov V A, Noy A 2014 Nature 514 612

    [141]

    Bocquet L, Charlaix E 2010 Chem. Soc. Rev. 39 1073

    [142]

    Guo S, Meshot E R, Kuykendall T, Cabrini S, Fornasiero F 2015 Adv. Mater. 27 5726

    [143]

    Mattia D, Leese H, Lee K P 2015 J. Membr. Sci. 475 266

    [144]

    Whitby M, Cagnon L, Thanou M, Quirke N 2008 Nano Lett. 8 2632

    [145]

    Qin X, Yuan Q, Zhao Y, Xie S, Liu Z 2011 Nano Lett. 11 2173

    [146]

    Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X Y, Xie G, Zhang Z, Bo Z, Jiang L 2015 J. Am. Chem. Soc. 137 11976

    [147]

    Xie G, Xiao K, Zhang Z, Kong X Y, Liu Q, Li P, Wen L, Jiang L 2015 Angew. Chem. Int. Ed. 54 13664

    [148]

    Tunuguntla R H, Henley R Y, Yao Y C, Pham T A, Wanunu M, Noy A 2017 Science 357 792

    [149]

    Pennathur S, Santiago J G 2005 Anal. Chem. 77 6772

    [150]

    Si W, Chen L, Hu X B, Tang G, Chen Z, Hou J L, Li Z T 2011 Angew. Chem. 123 12772

    [151]

    Lee C, Li Q, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76

    [152]

    Prakash S, Piruska A, Gatimu E N, Bohn P W, Sweedler J V, Shannon M A 2008 IEEE Sens. J. 8 441

    [153]

    Schneider G F, Kowalczyk S W, Calado V E, Pandraud G, Zandbergen H W, Vandersypen L M K, Dekker C 2010 Nano Lett. 10 3163

    [154]

    Xiong W, Liu H, Zhou Y, Ding Y, Zhang X, Jiang L 2016 ACS Appl. Mater. Interfaces 8 12534

    [155]

    Zhang P, Zhang F, Zhao C, Wang S, Liu M, Jiang L 2016 Angew. Chem. Int. Ed. 128 3679

    [156]

    Granick S 1991 Science 253 1374

    [157]

    Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K, Gomila G, Novoselov K S, Geim A K 2018 Science 360 1339

    [158]

    Jiang X, Gao H, Zhang X, Pang J, Li Y, Li K, Wu Y, Li S, Zhu J, Wei Y, Jiang L 2018 Nat. Commun. 9 3799

    [159]

    Chang L, Zhang X, Ding Y, Liu H, Liu M, Jiang L 2018 ACS Appl. Mater. Interfaces 10 29010

    [160]

    Sha M, Wu G, Liu Y, Tang Z, Fang H 2009 J. Phys. Chem. C 113 4618

    [161]

    Huang K, Liu G, Shen J, Chu Z, Zhou H, Gu X, Jin W, Xu N 2015 Adv. Funct. Mater. 25 5809

    [162]

    Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X 2013 Nat. Commun. 4 2979

    [163]

    Han Y, Xu Z, Gao C 2013 Adv. Funct. Mater. 23 3693

    [164]

    Mi B 2014 Science 343 740

    [165]

    Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M 2015 Nat. Nanotech. 10 459

    [166]

    Liu H, Wang H, Zhang X 2015 Adv. Mater. 27 249

    [167]

    Chen W, Fan Z, Pan X, Bao X 2008 J. Am. Chem. Soc. 130 9414

    [168]

    Guan Z, Lu S, Li C 2014 J. Catal. 311 1

    [169]

    Gao Z, Dong M, Wang G, Sheng P, Wu Z, Yang H, Zhang B, Wang G, Wang J, Qin Y 2015 Angew. Chem. Int. Ed. 54 9006

    [170]

    Ge H, Zhang B, Gu X, Liang H, Yang H, Gao Z, Wang J, Qin Y 2016 Angew. Chem. Int. Ed. 55 7081

    [171]

    Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, Chen S, Tong X, Wang M, Zheng Z, Qin Y 2017 Angew. Chem. Int. Ed. 56 816

    [172]

    Kageyama K, Tamazawa J I, Aida T 1999 Science 285 2113

    [173]

    Feng K, Zhang R Y, Wu L Z, Tu B, Peng M L, Zhang L P, Zhao D, Tung C H 2006 J. Am. Chem. Soc. 128 14685

    [174]

    Trépanier M, Tavasoli A, Dalai A K, Abatzoglou N 2009 Appl. Catal. A 353 193

    [175]

    Yue H, Zhao Y, Zhao S, Wang B, Ma X, Gong J 2013 Nat. Commun. 4 2339

    [176]

    Mu R, Fu Q, Jin L, Yu L, Fang G, Tan D, Bao X 2012 Angew. Chem. Int. Ed. 51 4856

    [177]

    Tung C H, Wang H, Ying Y M 1998 J. Am. Chem. Soc. 120 5179

    [178]

    Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y 2014 Nat. Commun. 5 3960

    [179]

    Tung C H, Wu L Z, Yuan Z Y, Su N 1998 J. Am. Chem. Soc. 120 11594

    [180]

    Tung C H, Guan J Q 1998 J. Am. Chem. Soc. 120 11874

    [181]

    Chu A, Cook J, Heesom R J R, Hutchison J L, Green M L H, Sloan J 1996 Chem. Mater. 8 2751

    [182]

    Zhou W, Li T, Wang J, Qu Y, Pan K, Xie Y, Tian G, Wang L, Ren Z, Jiang B, Fu H 2014 Nano Res. 7 731

    [183]

    Fang J, Zhang L, Li J, Lu L, Ma C, Cheng S, Li Z, Xiong Q, You H 2018 Nat. Commun. 9 521

    [184]

    Cauda V, Stassi S, Bejtka K, Canavese G 2013 ACS Appl. Mater. Interfaces 5 6430

    [185]

    Lee C W, Wei T H, Chang C W, Chen J T 2012 Macromol. Rapid Commun. 33 1381

    [186]

    Garcia-Gutierrez M C, Linares A, Martin-Fabiani I, Hernandez J J, Soccio M, Rueda D R, Ezquerra T A, Reynolds M 2013 Nanoscale 5 6006

    [187]

    Chen J, Wu D, Walter E, Engelhard M, Bhattacharya P, Pan H, Shao Y, Gao F, Xiao J, Liu J 2015 Nano Energy 13 267

  • [1] Li Peng-Fei, Liu Wan-Qi, Ha Shuai, Pan Yu-Zhou, Fan Xu-Hong, Du Zhan-Hui, Wan Cheng-Liang, Cui Ying, Yao Ke, Ma Yue, Yang Zhi-Hu, Shao Cao-Jie, Reinhold Schuch, Lu Di, Song Yu-Shou, Zhang Hong-Qiang, Chen Xi-Meng. Transmission of low energy electrons through PET nanocapillaries with 800 nm in diameter. Acta Physica Sinica, 2025, 74(2): . doi: 10.7498/aps.74.20241196
    [2] Zhang Peng, Zhang Yan-Ru, Zhang Fu-Jian, Liu Zhen, Zhang Zhong-Qiang. Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain. Acta Physica Sinica, 2024, 73(15): 154701. doi: 10.7498/aps.73.20240474
    [3] Meng Xian-Wen. Structural influence of electric field direction on water bridges in one-dimensional disjoint nanochannels. Acta Physica Sinica, 2024, 73(9): 093102. doi: 10.7498/aps.73.20240027
    [4] Xing He-Wei, Chen Zhan-Xiu, Yang Li, Su Yao, Li Yuan-Hua, Huhe Cang. Molecular dynamics simulation of effect of non-condensable gases on heat transfer of water molecule flow in nanochannels. Acta Physica Sinica, 2024, 73(9): 094701. doi: 10.7498/aps.73.20240192
    [5] Yan Meng, Sun Ke, Ning Ting-Yin, Zhao Li-Na, Ren Ying-Ying, Huo Yan-Yan. Numerical study of the low- threshold nanolaser based on quasi-bound states in the continuum supported by resonant waveguide grating structures. Acta Physica Sinica, 2023, 72(4): 044202. doi: 10.7498/aps.72.20221894
    [6] Chang Jing, Chen Ji. One-dimensional structures in nanoconfinement. Acta Physica Sinica, 2022, 71(12): 126101. doi: 10.7498/aps.71.20220035
    [7] Gong Yue, Gu Lin. Structural evolution and matter transportation of the interface in all-solid-state battery. Acta Physica Sinica, 2020, 69(22): 226801. doi: 10.7498/aps.69.20201160
    [8] Xie Tian-Ting, Deng Ke, Luo Mao-Kang. Direct transport of particles in two-dimensional asymmetric periodic time-shift corrugated channel. Acta Physica Sinica, 2016, 65(15): 150501. doi: 10.7498/aps.65.150501
    [9] Qing Qian-Jun, Zhou Xin, Xie Fang, Chen Li-Qun, Wang Xin-Jun, Tan Shi-Hua, Peng Xiao-Fang. Characteristics of acoustic phonon transport and thermal conductance in multi-terminal graphene junctions. Acta Physica Sinica, 2016, 65(8): 086301. doi: 10.7498/aps.65.086301
    [10] Lei Peng-Fei, Zhang Jia-Zhong, Wang Zhuo-Pu, Chen Jia-Hui. Lagrangian coherent structure and transport in unsteady transient flow. Acta Physica Sinica, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [11] Hu Hai-Bao, Bao Lu-Yao, Huang Su-He. Simulation studies on fluid density distribution of micro-flows in a nano-channel. Acta Physica Sinica, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [12] Zhang Rui-Zhi, Chen Wen-Hao, Yang Lu-Na. Confinement effect and interface effects on the thermoelectric properties of nano-ceramics: theoretical study. Acta Physica Sinica, 2012, 61(18): 187201. doi: 10.7498/aps.61.187201
    [13] Zhang Xin, Ma Xu-Yi, Zhang Fei-Peng, Wu Peng-Xu, Lu Qing-Mei, Liu Yan-Qin, Zhang Jiu-Xing. Synthesis and thermoelectric properties of nanostructured bismuth telluride alloys. Acta Physica Sinica, 2012, 61(4): 047201. doi: 10.7498/aps.61.047201
    [14] Liu Xing-Hui, Zhang Jun-Song, Wang Ji-Wei, Ao Qiang, Wang Zhen, Ma Ying, Li Xin, Wang Zhen-Shi, Wang Rui-Yu. Study on transport characteristics of CNTFET with HALO-LDD doping structure based on NEGF quantum theory. Acta Physica Sinica, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [15] Xia Zhi-Lin. The laser induced electronic acceleration process in nanostructured dielectric. Acta Physica Sinica, 2011, 60(5): 056804. doi: 10.7498/aps.60.056804
    [16] Ye Fu-Qiu, Li Ke-Min, Peng Xiao-Fang. Ballistic phonon transport and thermal conductance in multi-channel quantum structure at low temperatures. Acta Physica Sinica, 2011, 60(3): 036806. doi: 10.7498/aps.60.036806
    [17] Zhao Qi-Di, Zhang Zhen-Hua. Electronic transport properties of single-walled carbon nanotubes under a low bias. Acta Physica Sinica, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [18] Cao Bing-Yang, Chen Min, Guo Zeng-Yuan. Velocity slip of liquid flow in nanochannels. Acta Physica Sinica, 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [19] Chen Jiang-Wei, Yang Lin-Feng. Electron transport properties of the finite double-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
    [20] CHEN GENG-HUA, ZHAO ZHONG-XIAN. TRANSMISSION PROBABILITY IN ONE-DIMENSIONAL NORMAL-METAL MULTICHANNEL STRUCTURE. Acta Physica Sinica, 1987, 36(6): 725-735. doi: 10.7498/aps.36.725
Metrics
  • Abstract views:  9884
  • PDF Downloads:  383
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2018
  • Accepted Date:  20 December 2018
  • Published Online:  05 January 2019

/

返回文章
返回