Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide

Li Chuang Cai Li Li Wei-Wei Xie Dan Liu Bao-Jun Xiang Lan Yang Xiao-Kuo Dong Dan-Na Liu Jia-Hao Li Cheng Wei Bo

Citation:

Adsorption of NO2 by hydrazine hydrate-reduced graphene oxide

Li Chuang, Cai Li, Li Wei-Wei, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Li Cheng, Wei Bo
PDF
HTML
Get Citation
  • Reduced graphene oxide, as a candidate for gas detection due to its unique atomic structure, is arousing the wide interest of researchers. In this paper, hydrazine hydrate is used to reduce graphene oxide prepared by the modified Hummers method. A chemical resistance gas sensor is fabricated. The prepared reduced graphene oxide is used as a gas sensitive layer of Au planar interdigital electrode. The gas sensing characteristics such as responsivity, recovery and repeatability of NO2 gas are studied. The results show that the graphene oxide reduced by hydrazine hydrate can detect the NO2 gas at a concentration of 1−40 ppm under room temperature. It has good responsivity and repeatability. The recovery rate can reach more than 71%. However, the sensitivity is only 0.00201 ppm–1, and there is much room for improvement. In addition, the response time and recovery time for NO2 at 5 ppm concentration are 319 s and 776 s, respectively. The sensing mechanism of the hydrazine hydrate-reduced graphene oxide gas sensor can be attributed to charge transfer between the NO2 molecule and the sensing material. The outstanding electrical properties of the reduced graphene oxide promote the electron transfer process. This allows the sensor to exhibit excellent gas sensing performance at room temperature. The reduced graphene oxide appears as a typical p-type semiconductor and the oxidizing gas NO2 acts as an electron acceptor. Therefore, the adsorption of NO2 gas leads to the enhancement of the hole density and conductivity of the reduced graphene oxide. Another reason is the presence of defects and oxygen-containing functional groups on graphene sheets. Some oxygen-containing groups remain on the graphene surface after an incomplete reduction reaction. Compared with pure graphene, the reduced graphene oxide has hydroxyl groups and epoxy groups remaining on the surface. These functional groups will functionalize the material and promote the adsorption of gases. At the same time, the reduction reaction will further produce vacancies and structural defects. This will provide more reaction sites and thus conduce to the material further adsorbing the gas. In summary, the experimental research in this paper is of significance for studying the mechanism and characteristics of the reduced graphene oxide by using hydrazine hydrate as a reducing agent, and it can provide reference and lay a foundation for the applications of future graphene sensors.
      Corresponding author: Cai Li, qianglicai@163.com ; Xie Dan, xiedan@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51672154, 51774191, 11405270), the National Key Research and Development Plan, China (Grant No. 2016YFA0200200), and the Natural Science for Basic Research Program of Shaanxi Province, China (Grant No. 2017JM6072).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [3]

    魏晓林, 陈元平, 王如志, 钟建新 2013 物理学报 62 057101Google Scholar

    Wei X L, Chen Y P, Wang R Z, Zhong J X 2013 Acta Phys. Sin. 62 057101Google Scholar

    [4]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [5]

    Gavgani J N, Hasani A, Nouri M, Mahyari M, Salehi A 2016 Sens. Actuator B: Chem. 229 239Google Scholar

    [6]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [7]

    Matsuba K, Wang C, Saruwatari K, Uesusuki Y, Akatsuka K, Osada M, Ebina Y, Ma R, Sasaki T 2017 Sci. Adv. 3 e1700414Google Scholar

    [8]

    Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W 2017 Nat. Commun. 8 820Google Scholar

    [9]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [10]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEE Electron Device Lett. 40 220Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [12]

    Zhang T, Ma Y D, Huang B B, Dai Y 2019 ACS Appl. Mater.Interfaces 11 6104

    [13]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29Google Scholar

    [15]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Král P 2014 Nat. Commun. 5 4911Google Scholar

    [16]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Kyun Seo D, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [17]

    Yavari F, Koratkar N 2012 J. Phys. Chem. Lett. 3 1746Google Scholar

    [18]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [19]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217Google Scholar

    [20]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [21]

    韩林芷, 赵占霞, 马忠权 2014 物理学报 63 248103Google Scholar

    Han L Z, Zhao Z X, Ma Z Q 2014 Acta Phys. Sin. 63 248103Google Scholar

    [22]

    Dua V, Surwade S P, Ammu S, Agnihotra S R, Jain S, Roberts K E, Park S, Ruoff R S, Manohar S K 2010 Angew. Chem. 122 2200Google Scholar

    [23]

    Li W, Li X, Cai L, Sun Y, Sun M, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [24]

    Li W, Teng C, Sun Y, Cai L, Xu J L, Sun M, Li X, Yang X, Xiang L, Xie D 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [25]

    Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong E S W, Zhang Y 2012 Sens. Actuator B: Chem. 163 107Google Scholar

    [26]

    Brodie B 1860 Ann. Chim. Phys. 59 e472

    [27]

    Staudenmaier L 1898 Ber. Dtsch. Chem. Ges. 31 1481Google Scholar

    [28]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [29]

    洪菲, 周立群, 黄莹, 宋荷娟, 王婷, 罗辛茹, 伍珍 2012 化学与生物工程 29 31Google Scholar

    Hong F, Zhou L Q, Huang Y, Song H J, Wang T, Luo X R, Wu Z 2012 Chem. Bioeng. 29 31Google Scholar

    [30]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [31]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426Google Scholar

    [32]

    Ren P G, Yan D X, Ji X, Chen T, Li Z M 2010 Nanotechnology 22 055705

    [33]

    Wan W B, Zhao Z B, Hu H, Zhou Q, Fan Y R, Qiu J S 2011 Carbon 8 2878

    [34]

    Alizadeh T, Soltani L H 2016 Sens. Actuator B: Chem. 234 361Google Scholar

    [35]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [36]

    Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M 2015 Sci. Rep. 5 8052Google Scholar

    [37]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [38]

    Yang L, Cai Z, Hao L, Ran L, Xu X, Dai Y, Pan S, Jing B, Zou J 2018 Electrochim. Acta 283 448Google Scholar

    [39]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS Nano 10 9287Google Scholar

    [40]

    Lu G, Ocola L E, Chen J 2009 Appl. Phys. Lett. 94 083111Google Scholar

    [41]

    Pearce R, Iakimov T, Andersson M, Hultman L, Spetz A L, Yakimova R 2011 Sens. Actuator B: Chem. 155 451Google Scholar

    [42]

    Yavari F, Castillo E, Gullapalli H, Ajayan P M, Koratkar N 2012 Appl. Phys. Lett. 100 203120Google Scholar

    [43]

    Qazi M, Nomani M W, Chandrashekhar M, Shields V B, Spencer M G, Koley G 2010 Appl. Phys. Express 3 075101Google Scholar

  • 图 1  对1—40 ppm NO2的实时响应曲线

    Figure 1.  Real-time response curves to 1−40 ppm NO2.

    图 2  响应与浓度的关系

    Figure 2.  The plot of response vs. concentration.

    图 3  恢复率与浓度的关系图

    Figure 3.  The plot of recovery vs. concentration.

    图 4  传感器对10 ppm二氧化氮气体响应的重复性测试

    Figure 4.  Repeatability of the sensor after exposure to 10 ppm NO2.

    图 5  传感器对5 ppm NO2气体的响应和恢复时间

    Figure 5.  Response and recovery times of the sensor to 5 ppm NO2.

    表 1  不同石墨烯基气体传感器检测NO2性能对比

    Table 1.  Graphene based gas sensors for NO2 detection.

    敏感材料 浓度 响应度 响应时间 恢复时间 文献
    rGO 5 ppm $1.03\left( {{R_{\rm{a}}}/{R_{\rm{g}}}} \right)$ ~5.3 min ~13 min 本文
    低温热还原rGO 2 ppm $1.56\left( {{G_{\rm{g}}} - {G_{\rm{a}}}} \right)/{G_{\rm{a}}}$ ~30 min > 30 min [40]
    机械剥离石墨烯 2.5 ppm $0.005\left( {{R_{\rm{g}}}/{R_{\rm{a}}}} \right)$ ~1 h ~2.5 h [41]
    CVD石墨烯 10 ppm 15% $\left( {\Delta R/{R_{\rm{a}}}} \right)$ ~30 min ~45 min [42]
    外延生长的石墨烯 15 ppm 7.50%$ \left[ {\left( {{G_{\rm{g}}} - {G_{\rm{a}}}} \right)/{G_{\rm{a}}}} \right]$ ~7.5 min ~17 min [43]
    注: a) 1 ppb = 10-9; b) Ga, 在干燥空气中的电导; Gg, 在测试气体中的电导; c) Ra, 在干燥空气中的电阻; Rg, 在测试气体中的电阻; d) $\Delta R$, 由气体浓度变化导致的电阻的相对改变, $\Delta R={R_{\rm{a}}} - {R_{\rm{g}}}.$
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    孙建平, 缪应蒙, 曹相春 2013 物理学报 62 036301Google Scholar

    Sun J P, Liao Y M, Cao X C 2013 Acta Phys. Sin. 62 036301Google Scholar

    [3]

    魏晓林, 陈元平, 王如志, 钟建新 2013 物理学报 62 057101Google Scholar

    Wei X L, Chen Y P, Wang R Z, Zhong J X 2013 Acta Phys. Sin. 62 057101Google Scholar

    [4]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [5]

    Gavgani J N, Hasani A, Nouri M, Mahyari M, Salehi A 2016 Sens. Actuator B: Chem. 229 239Google Scholar

    [6]

    Ye Z, Tai H, Xie T, Yuan Z, Liu C, Jiang Y 2016 Sens. Actuator B: Chem. 223 149Google Scholar

    [7]

    Matsuba K, Wang C, Saruwatari K, Uesusuki Y, Akatsuka K, Osada M, Ebina Y, Ma R, Sasaki T 2017 Sci. Adv. 3 e1700414Google Scholar

    [8]

    Pour M M, Lashkov A, Radocea A, Liu X, Sun T, Lipatov A, Korlacki R A, Shekhirev M, Aluru N R, Lyding J W 2017 Nat. Commun. 8 820Google Scholar

    [9]

    Singh E, Meyyappan M, Nalwa H S 2017 ACS Appl. Mater. Interfaces 9 34544Google Scholar

    [10]

    Liu J H, Yang X K, Zhang M L, Wei B, Li C, Dong D N, Li C 2019 IEEE Electron Device Lett. 40 220Google Scholar

    [11]

    Liu J H, Yang X K, Cui H Q, Wang S, Wei B, Li C, Li C, Dong D N 2019 J. Magn. Magn. Mater. 474 161Google Scholar

    [12]

    Zhang T, Ma Y D, Huang B B, Dai Y 2019 ACS Appl. Mater.Interfaces 11 6104

    [13]

    Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K 2007 Nat. Mater. 6 652Google Scholar

    [14]

    Venugopal G, Krishnamoorthy K, Mohan R, Kim S J 2012 Mater. Chem. Phys. 132 29Google Scholar

    [15]

    Yasaei P, Kumar B, Hantehzadeh R, Kayyalha M, Baskin A, Repnin N, Wang C, Klie R F, Chen Y P, Král P 2014 Nat. Commun. 5 4911Google Scholar

    [16]

    Chung M G, Kim D H, Lee H M, Kim T, Choi J H, Kyun Seo D, Yoo J B, Hong S H, Kang T J, Kim Y H 2012 Sens. Actuator B: Chem. 166 172

    [17]

    Yavari F, Koratkar N 2012 J. Phys. Chem. Lett. 3 1746Google Scholar

    [18]

    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451Google Scholar

    [19]

    Park S, Ruoff R S 2009 Nat. Nanotechnol. 4 217Google Scholar

    [20]

    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N 2006 Science 312 1191Google Scholar

    [21]

    韩林芷, 赵占霞, 马忠权 2014 物理学报 63 248103Google Scholar

    Han L Z, Zhao Z X, Ma Z Q 2014 Acta Phys. Sin. 63 248103Google Scholar

    [22]

    Dua V, Surwade S P, Ammu S, Agnihotra S R, Jain S, Roberts K E, Park S, Ruoff R S, Manohar S K 2010 Angew. Chem. 122 2200Google Scholar

    [23]

    Li W, Li X, Cai L, Sun Y, Sun M, Xie D 2018 J. Nanosci. Nanotechnol. 18 7927Google Scholar

    [24]

    Li W, Teng C, Sun Y, Cai L, Xu J L, Sun M, Li X, Yang X, Xiang L, Xie D 2018 ACS Appl. Mater. Interfaces 10 34485Google Scholar

    [25]

    Hu N, Wang Y, Chai J, Gao R, Yang Z, Kong E S W, Zhang Y 2012 Sens. Actuator B: Chem. 163 107Google Scholar

    [26]

    Brodie B 1860 Ann. Chim. Phys. 59 e472

    [27]

    Staudenmaier L 1898 Ber. Dtsch. Chem. Ges. 31 1481Google Scholar

    [28]

    Hummers Jr W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339Google Scholar

    [29]

    洪菲, 周立群, 黄莹, 宋荷娟, 王婷, 罗辛茹, 伍珍 2012 化学与生物工程 29 31Google Scholar

    Hong F, Zhou L Q, Huang Y, Song H J, Wang T, Luo X R, Wu Z 2012 Chem. Bioeng. 29 31Google Scholar

    [30]

    Compton O C, Nguyen S T 2010 Small 6 711Google Scholar

    [31]

    Lipatov A, Varezhnikov A, Wilson P, Sysoev V, Kolmakov A, Sinitskii A 2013 Nanoscale 5 5426Google Scholar

    [32]

    Ren P G, Yan D X, Ji X, Chen T, Li Z M 2010 Nanotechnology 22 055705

    [33]

    Wan W B, Zhao Z B, Hu H, Zhou Q, Fan Y R, Qiu J S 2011 Carbon 8 2878

    [34]

    Alizadeh T, Soltani L H 2016 Sens. Actuator B: Chem. 234 361Google Scholar

    [35]

    Li D, Müller M B, Gilje S, Kaner R B, Wallace G G 2008 Nat. Nanotechnol. 3 101Google Scholar

    [36]

    Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M 2015 Sci. Rep. 5 8052Google Scholar

    [37]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [38]

    Yang L, Cai Z, Hao L, Ran L, Xu X, Dai Y, Pan S, Jing B, Zou J 2018 Electrochim. Acta 283 448Google Scholar

    [39]

    Ko K Y, Song J G, Kim Y, Choi T, Shin S, Lee C W, Lee K, Koo J, Lee H, Kim J 2016 ACS Nano 10 9287Google Scholar

    [40]

    Lu G, Ocola L E, Chen J 2009 Appl. Phys. Lett. 94 083111Google Scholar

    [41]

    Pearce R, Iakimov T, Andersson M, Hultman L, Spetz A L, Yakimova R 2011 Sens. Actuator B: Chem. 155 451Google Scholar

    [42]

    Yavari F, Castillo E, Gullapalli H, Ajayan P M, Koratkar N 2012 Appl. Phys. Lett. 100 203120Google Scholar

    [43]

    Qazi M, Nomani M W, Chandrashekhar M, Shields V B, Spencer M G, Koley G 2010 Appl. Phys. Express 3 075101Google Scholar

  • [1] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] Fan Qin-Kai, Yang Chen-Guang, Hu Shu-Xin, Xu Chun-Hua, Li Ming, Lu Ying. Single-molecular surface-induced fluorescence attenuation based on thermal reduced graphene oxide. Acta Physica Sinica, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [4] Li Xing-Long, Zhao Hao-Yu, Wu Wen-Jie, Jiang Wei-Feng, Zheng Jia-Jin, Zhang Zu-Xing, Yu Ke-Han, Wei Wei. Graphene oxide modified tilted fiber Bragg grating for 10–12 level heavy metal ion sensing. Acta Physica Sinica, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [5] Zhang Gai, Xie Hai-Mei, Song Hai-Bin, Li Xiao-Fei, Zhang Qian, Kang Yi-Lan. Experimental analysis of influence of different charge-discharge modes on lithium storage performance of reduced graphene oxide electrodes. Acta Physica Sinica, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [6] Lu Qun-Lin, Yang Wei-Huang, Xiong Fei-Bing, Lin Hai-Feng, Zhuang Qin-Qin. Effect of biaxial strain on the gas-sensing of monolayer GeSe. Acta Physica Sinica, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [7] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] Mo Jia-Wei, Qiu Yin-Wei, Yi Ruo-Bing, Wu Jun, Wang Zhi-Kun, Zhao Li-Hua. Temperature-dependent properties of metastable graphene oxide. Acta Physica Sinica, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [9] Cao Yuan, Tian Xing, Cheng Gang, Liu Kun, Wang Gui-Shi, Zhu Gong-Dong, Gao Xiao-Ming. NO2 measurement using fiber coupled broadband LED source combining a Herriott multi-pass cell. Acta Physica Sinica, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [10] Qiao Zhi-Xing, Qin Cheng-Bing, He Wen-Jun, Gong Ya-Ni, Xiao Lian-Tuan, Zhang Guo-Feng, Chen Rui-Yun, Gao Yan, Jia Suo-Tang. Lifetime modulation of graphene oxide film by laser direct writing for the fabrication of micropatterns. Acta Physica Sinica, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [11] Chen Hao, Peng Tong-Jiang, Liu Bo, Sun Hong-Juan, Lei De-Hui. Effect of reduction temperature on structure and hydrogen sensitivity of graphene oxides at room temperature. Acta Physica Sinica, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [12] Zhu Bing, Feng Hao. Electron scattering studies of NO2 radical using R-matrix method. Acta Physica Sinica, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [13] Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao. Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells. Acta Physica Sinica, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [14] Duan Jun, Qin Min, Fang Wu, Ling Liu-Yi, Hu Ren-Zhi, Lu Xue, Shen Lan-Lan, Wang Dan, Xie Pin-Hua, Liu Jian-Guo, Liu Wen-Qing. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric HONO. Acta Physica Sinica, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [15] Liu Yan-Yan, Dong Lei, Wu Hong-Peng, Zheng Hua-Dan, Ma Wei-Guang, Zhang Lei, Yin Wang-Bao, Jia Suo-Tang. All optical quartz-enhanced photoacoustic spectroscopy. Acta Physica Sinica, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] Hu Ming, Liu Qing-Lin, Jia Ding-Li, Li Ming-Da. Gas-sensing properties at room temperature for the sensors based on tungsten oxide thin films sputtered on n-type ordered porous silicon. Acta Physica Sinica, 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [17] Shi Li-Chao, Zhang Wei, Jin Jie, Huang Yi-Dong, Peng Jiang-De. Fabrication of mid-infrared hollow-core Bragg fiber and it application in gas sensing. Acta Physica Sinica, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] Li Zhi-Hui, Yuan Chang-Ying, Meng Gui, Yan Zheng-Xin, Shang Li-Ping. Photoacoustic signal saturation characteristics of concentrated gases. Acta Physica Sinica, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [20] Sheng Yong-Gang, Xu Yao, Li Zhi-Hong, Wu Dong, Sun Yu-Han, Wu Zhong-Hua. Determination of fractal dimensions of silicon dioxide xerogel by means of gas-adsorption. Acta Physica Sinica, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
Metrics
  • Abstract views:  9979
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2018
  • Accepted Date:  27 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回