Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model

Nie Min Wei Rong-Yu Yang Guang Zhang Mei-Ling Sun Ai-Jing Pei Chang-Xing

Citation:

An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model

Nie Min, Wei Rong-Yu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing
PDF
HTML
Get Citation
  • Quantum communication in free space will be disturbed by natural environment such as fog and dust. However, to build a global quantum satellite wide area communication network, we must solve the problem of 24-h all-weather communication between satellite and earth. With the evolution of time, the degree of interference becomes deeper. In order to improve the performance of quantum communication under such an interference, in this paper we analyze the change of single quantum state channel over time under the background interference, and propose an quantum state-hopping communication strategy based on the kangaroo entanglement hopping model (KEHM), and simulate the performance and parameters of the strategy. Kangaroos are social animals. When they are frightened, they will jump synchronously in the same way with the same step length, height and frequency. According to this model, we make the two communicating parties realize synchronous quantum state jump according to the prearranged pattern. The simulations show that when the ratio between the average power of background quantum noise and the average power of quantum signal is 5, the quantum bit error rate decreases from 0.4524 to 0.1116 with the quantum state hopping frequency increasing from 1 to 15. When the single quantum state transmission success rate is 0.95 and the quantum bit rate is greater than 200 qubit/s, the probabilities of successful transmission of quantum bits at different state hopping frequencies are greater than 0.97. When the quantum reception efficiency of the receiver is 0.8, the quantum state pass rate increases from 0.3667 to 0.9986 with the average quantum number of the source increasing from 1 to 10. When the average quantum number of the source is 6, the passing rate of quantum state increases from 0.6262 to 0.9855 with the quantum receiving efficiency of the receiver increasing from 0.2 to 0.99. However, if the average quantum number of the transmitter is large enough and the receiving efficiency of the receiver is close to 1, the passing rate of the quantum state is also close to 1. The adaptive control strategy of quantum state hopping is based on real-time quantum channel state detection. Its core idea is to remove the quantum states which are seriously disturbed from the quantum state hopping set, and to realize the synchronous hopping of communication parties on the quantum states with low interference. Adopting the strategy of quantum state hopping adaptive control can further reduce the quantum bit error rate of the system. The error rate gain of adaptive control system increases with the increase of the success probability of processing the disturbed quantum state. When the probability of processing the disturbed quantum state is 0.95, the system error rate gain can reach 1.301. The performance of quantum state hopping system is improved obviously. To sum up, the adaptive quantum state-hopping communication strategy based on the kangaroo entanglement hopping model proposed in this paper greatly enhances the comprehensive immunity of the system and ensures the security of quantum information network, and provides an important reference for the healthy development of wide-area quantum satellite communication network in the future.
      Corresponding author: Wei Rong-Yu, 353504371@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61172071 ), the International Scientific and Technological Cooperation and Exchange Program in Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
    [1]

    Jin X M, Ren J G, Yang B 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Alessandro F, Rupert U, Thomas H, Matteo N, Robert P, Thomas S, Felix T, Thomas J, Anton Z 2009 Nat. Phys. 5 389Google Scholar

    [3]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269Google Scholar

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photonics 7 387Google Scholar

    [5]

    Wang X L, Cai X D, Su Z E 2015 Nature 518 516Google Scholar

    [6]

    Davide E B, Timothy C, Ralph, Ivette F, Thomas J, Mohsen R 2014 Phys. Rev. D 90 045041Google Scholar

    [7]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photonics 11 509Google Scholar

    [8]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [9]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [10]

    Ivan C, Andrea T, Alberto D, Francesca G, Ruper U, Giuseppe V, Paolo V 2012 Phys. Rev. Lett. 109 200502Google Scholar

    [11]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 0701002

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 0701002

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0927004

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 1206002

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 1206002

    [15]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [16]

    聂敏, 石力, 杨光, 裴昌幸 2017 通信学报 38 2017092

    Nie M, Shi L, Yang G, Pei C X 2017 J. Communs. 38 2017092

    [17]

    张永德 2010 量子力学 (北京: 科学出版社) 第343页

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese)

    [18]

    张永德 2010 高等量子力学 (北京: 科学出版社) 第24页

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese)

    [19]

    马科 L 著 (周万幸, 吴鸣亚, 胡明春, 金林 译) 2013 量子雷达 (北京: 电子工业出版社) 第15—17页

    Marco L (translated bu Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House of Electronics Industry) pp15−17 (in Chinese)

    [20]

    尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第100页

    Yin H, Han Y 2013 Quantum Communication Principle and Technology (Beijing: Publishing House of Electronics Industry) p100 (in Chinese)

  • 图 1  ${K_{\rm{A}}}$的跳跃模式

    Figure 1.  Skip mode of ${K_{\rm{A}}}$

    图 2  ${K_{\rm{B}}}$的跳跃模式

    Figure 2.  Skip mode of ${K_{\rm{B}}}$

    图 3  量子误比特率与量子态跳频率及${K_{JS}}$的关系

    Figure 3.  Relationship between quantum bit error rate, quantum state hopping frequency and ${K_{JS}}$

    图 4  量子比特成功传输概率与量子比特率的关系

    Figure 4.  Relationship between the probability of successful quantum bit transmission and the quantum bit rate

    图 5  量子态通过率与接收端量子接收效率及信号源平均量子数的关系

    Figure 5.  Relationship between the quantum state pass rate and the receiver's quantum reception efficiency and the average quantum number of the signal source

    图 6  量子态数目、被严重干扰的概率与平均自适应处理时间的关系

    Figure 6.  Relationship between the number of quantum states, the probability of serious interference, and the mean adaptive processing time

    图 7  量子态跳自适应控制策略系统增益

    Figure 7.  Gain of the quantum state hopping adaptive control system

    表 1  不同时刻通信双方量子跳跃状态

    Table 1.  Quantum hopping states of communication parties at different moments

    时刻 $T$ 状态 $\left| \phi \right\rangle $
    0—T1 ${\left| \phi \right\rangle _n}$
    T1T2 ${\left| \phi \right\rangle _{n-2}}$
    T2T3 ${\left| \phi \right\rangle _{n - 1}}$
    T3T4 ${\left| \phi \right\rangle _1}$
    $ \cdots $ $ \cdots $
    Tn–1Tn ${\left| \phi \right\rangle _1}$
    DownLoad: CSV
  • [1]

    Jin X M, Ren J G, Yang B 2010 Nat. Photonics 4 376Google Scholar

    [2]

    Alessandro F, Rupert U, Thomas H, Matteo N, Robert P, Thomas S, Felix T, Thomas J, Anton Z 2009 Nat. Phys. 5 389Google Scholar

    [3]

    Ma X S, Thomas H, Thomas S, Wang D Q, Sebastian K, William Nr, Bernhard W, Alexandra M, Johannes K, Elena A, Vadim M, Thomas J, Rupert U, Anton Z 2012 Nature 489 269Google Scholar

    [4]

    Wang J Y, Yang B, Liao S K, Zhang L, Shen Q, Hu X F, Wu J C, Yang S J, Jiang H, Tang Y L, Zhong B, Liang H, Liu W Y, Hu Y H, Huang Y M, Qi B, Ren J G, Pan G S, Yin J, Jia J J, Chen Y A, Chen K, Peng C Z, Pan J W 2013 Nat. Photonics 7 387Google Scholar

    [5]

    Wang X L, Cai X D, Su Z E 2015 Nature 518 516Google Scholar

    [6]

    Davide E B, Timothy C, Ralph, Ivette F, Thomas J, Mohsen R 2014 Phys. Rev. D 90 045041Google Scholar

    [7]

    Liao S K, Yong H L, Liu C, Shentu G L, Li D D, Lin J, Dai H, Zhao S Q, Li B, Guan J Y, Chen W, Gong Y H, Li Y, Lin Z H, Pan G S, Pelc S J, Fejer M M, Zhang W Z, Liu W Y, Yin J, Ren J G, Wang X B, Zhang Q, Peng C Z, Pan J W 2017 Nat. Photonics 11 509Google Scholar

    [8]

    聂敏, 尚鹏钢, 杨光, 张美玲, 裴昌幸 2014 物理学报 63 240303Google Scholar

    Nie M, Shang P G, Yang G, Zhang M L, Pei C X 2014 Acta Phys. Sin. 63 240303Google Scholar

    [9]

    聂敏, 任杰, 杨光, 张美玲, 裴昌幸 2015 物理学报 64 150301Google Scholar

    Nie M, Ren J, Yang G, Zhang M L, Pei C X 2015 Acta Phys. Sin. 64 150301Google Scholar

    [10]

    Ivan C, Andrea T, Alberto D, Francesca G, Ruper U, Giuseppe V, Paolo V 2012 Phys. Rev. Lett. 109 200502Google Scholar

    [11]

    聂敏, 常乐, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 0701002

    Nie M, Chang L, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 0701002

    [12]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 光子学报 45 0927004

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Photon. Sin. 45 0927004

    [13]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 物理学报 66 070302Google Scholar

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Phys. Sin. 66 070302Google Scholar

    [14]

    聂敏, 唐守荣, 杨光, 张美玲, 裴昌幸 2017 光子学报 46 1206002

    Nie M, Tang S R, Yang G, Zhang M L, Pei C X 2017 Acta Photon. Sin. 46 1206002

    [15]

    聂敏, 任家明, 杨光, 张美玲, 裴昌幸 2016 物理学报 65 190301Google Scholar

    Nie M, Ren J M, Yang G, Zhang M L, Pei C X 2016 Acta Phys. Sin. 65 190301Google Scholar

    [16]

    聂敏, 石力, 杨光, 裴昌幸 2017 通信学报 38 2017092

    Nie M, Shi L, Yang G, Pei C X 2017 J. Communs. 38 2017092

    [17]

    张永德 2010 量子力学 (北京: 科学出版社) 第343页

    Zhang Y D 2010 Quantum Mechanics (Beijing: Science Press) p343 (in Chinese)

    [18]

    张永德 2010 高等量子力学 (北京: 科学出版社) 第24页

    Zhang Y D 2010 Advanced Quantum Mechanics (Beijing: Science Press) p24 (in Chinese)

    [19]

    马科 L 著 (周万幸, 吴鸣亚, 胡明春, 金林 译) 2013 量子雷达 (北京: 电子工业出版社) 第15—17页

    Marco L (translated bu Zhou W X, Wu M Y, Hu M C, Jin L) 2013 Quantum Radar (Beijing: Publishing House of Electronics Industry) pp15−17 (in Chinese)

    [20]

    尹浩, 韩阳 2013 量子通信原理与技术 (北京: 电子工业出版社) 第100页

    Yin H, Han Y 2013 Quantum Communication Principle and Technology (Beijing: Publishing House of Electronics Industry) p100 (in Chinese)

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Xiong Fan, Chen Yong-Cong, Ao Ping. Qubit dynamics driven by dipole field in thermal noise environment. Acta Physica Sinica, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] Zhang Jiao-Yang, Cong Shuang, Wang Chi, Sajede Harraz. Decoherence suppression for N-qubit states via weak measurement and environment-assisted measurement. Acta Physica Sinica, 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [4] Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement. Acta Physica Sinica, 2022, 71(10): 100301. doi: 10.7498/aps.71.20212173
    [5] Yang Rui-Ke, Li Fu-Jun, Wu Fu-Ping, Lu Fang, Wei Bing, Zhou Ye. Influence of sand and dust turbulent atmosphere on performance of free space quantum communication. Acta Physica Sinica, 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [6] Nie Min, Wang Chao-Xu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Influence of snowfall on free-space quantum channel near earth surface and parameter simulation. Acta Physica Sinica, 2021, 70(3): 030301. doi: 10.7498/aps.70.20200972
    [7] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [8] Nie Min, Ren Jia-Ming, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of nonspherical aerosol particles and relative humidity of atmosphere on the performance of free space quantum communication. Acta Physica Sinica, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [9] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [10] Nie Min, Ren Jie, Yang Guang, Zhang Mei-Ling, Pei Chang-Xing. Influences of PM2.5 atmospheric pollution on the performance of free space quantum communication. Acta Physica Sinica, 2015, 64(15): 150301. doi: 10.7498/aps.64.150301
    [11] Shi Zhen-Gang, Wen Wei, Chen Xiong-Wen, Xiang Shao-Hua, Song Ke-Hui. Shot noise spectrum of a double quantum dot charge qubit. Acta Physica Sinica, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [12] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [13] Xiao Hai-Lin, Ouyang Shan, Nie Zai-Ping. The spatial degrees of freedom of MIMO quantum channels. Acta Physica Sinica, 2009, 58(6): 3685-3691. doi: 10.7498/aps.58.3685
    [14] Cui Da-Jian, Lin De-Hua, Yu Hai-Feng, Peng Zhi-Hui, Zhu Xiao-Bo, Zheng Dong-Ning, Jing Xiu-Nian, Lü Li, Zhao Shi-Ping. Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction. Acta Physica Sinica, 2008, 57(9): 5933-5936. doi: 10.7498/aps.57.5933
    [15] Gao Kuan-Yun, Zhao Cui-Lan. Properties of quantum bit in quantum ring. Acta Physica Sinica, 2008, 57(7): 4446-4449. doi: 10.7498/aps.57.4446
    [16] Wang Shao-Kai, Ren Ji-Gang, Jin Xian-Min, Yang Bin, Yang Dong, Peng Cheng-Zhi, Jiang Shuo, Wang Xiang-Bin. The design of entangled source for free space quantum communications. Acta Physica Sinica, 2008, 57(3): 1356-1359. doi: 10.7498/aps.57.1356
    [17] Wang Jin-Dong, Lu Wei, Zhao Feng, Liu Xiao-Bao, Guo Bang-Hong, Zhang Jing, Huang Yu-Xian, Lu Yi-Qun, Liu Song-Hao. The experimental research on a stable free-space quantum key distribution system with low noise. Acta Physica Sinica, 2008, 57(7): 4214-4218. doi: 10.7498/aps.57.4214
    [18] Xiong Tao, Chang Sheng-Jiang, Shen Jin-Yuan, Zhang Yan-Xin. Adaptive training and pruning algorithm for variable bit rate video traffic pre diction. Acta Physica Sinica, 2005, 54(4): 1931-1936. doi: 10.7498/aps.54.1931
    [19] Wang Bo-Bo. Entropy of Dirac field in toroidal black hole. Acta Physica Sinica, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [20] Miao Er-Long, Mo Xiao-Fan, Gui You-Zhen, Han Zheng-Fu, Guo Guang-Can. Phase-modulated free space quantum key distribution. Acta Physica Sinica, 2004, 53(7): 2123-2126. doi: 10.7498/aps.53.2123
Metrics
  • Abstract views:  6935
  • PDF Downloads:  39
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2019
  • Accepted Date:  22 March 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回