Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-pressure neutron diffraction techniques based on Paris-Edingburgh press

Shi Yu Chen Xi-Ping Xie Lei Sun Guang-Ai Fang Lei-Ming

Citation:

High-pressure neutron diffraction techniques based on Paris-Edingburgh press

Shi Yu, Chen Xi-Ping, Xie Lei, Sun Guang-Ai, Fang Lei-Ming
PDF
HTML
Get Citation
  • Since the 1990s, with the benefit of available large-volumed samples, wide detector windows, and portability, Paris-Edinburgh press has been widely used in neutron facilities to study the structures and physical properties of condensed matter under high-pressure extreme conditions. In the present study, We perform high-pressure neutron diffraction experiments in neutron source of China using the Paris-Edinburgh press. The experiments are carried out on a high-pressure neutron diffraction spectrometer (Fenghuang) at China Mianyang Research Reactor (CMRR). Fenghuang is a high-intensity and moderate-resolution diffractometer which has been upgraded from a neutron powder diffractometer and can be used under ambient and extreme conditions. A single cylinder pump with a max load of 200 MPa provides a loading pressure for Paris-Edinburgh press, and a precise mobile platform is used to hang and to locate the Paris-Edinburgh press. Using the tungsten-carbide (WC) toroidal anvils with TiZr gasket, we obtain the neutron diffraction spectra of Fe samples at different pressures successfully. We also obtain the neutron diffraction spectra respectively at pressures of 9.7 GPa and 10.7 GPa by using a WC single-toroidal anvil and a WC double-toroidal anvil under load 100 MPa. The TiZr gasket blows out before the load reaches 100 MPa in the WC single-toroidal anvil assembly, while it remains good in the WC double-toroidal anvil assembly under the same load. The WC single-toroidal anvil assembly becomes unstable under load about 80 MPa, and the WC double-toroidal anvil assembly is still stable under load 100 MPa. Thus, the stability of the double-toroidal anvil assembly is much higher than that of the single-toroidal anvil assembly. It is found that the thickness of the gasket edge is very important for the stability of the assembly during loading. The thicker the edge of the gasket, the more stable the assembly is. The main reason is that the groove of the double concave anvil can enhance the lateral support ability of the gasket, thereby making the double concave surface assembly more stable than the single concave surface assembly.
      Corresponding author: Fang Lei-Ming, flmyaya2008@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11704276, 21573159, 11674365, 11874397).
    [1]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [2]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [3]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [4]

    Xu J A, Mao H K, Bell P M 1986 Science 232 4756

    [5]

    Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21

    [6]

    Neumann D A 2006 Mater. Today 9 34

    [7]

    Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar

    [8]

    Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar

    [9]

    Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar

    [10]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907

    [11]

    Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar

    [12]

    Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [13]

    Klotz S 2013 Techniques in High Pressure Neutron Scattering (Boca Raton: Taylor & Francis Group CRC Press) pp123−124

    [14]

    Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar

    [15]

    Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar

    [16]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [17]

    Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar

    [18]

    Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar

    [20]

    Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar

  • 图 1  巴黎-爱丁堡压机V型(左图)和VX型(右图)的横截面示意图[13]. ①液压入口; ②油缸; ③油腔; ④O型密封圈; ⑤加压主体框架; ⑥压砧; ⑦底座; ⑧后座; ⑨光路通孔; ⑩螺母; ⑪上压块; ⑫螺杆; ⑬垫片; ⑭钢柱

    Figure 1.  Cross section of Paris-Edinburgh press type V(left) and type VX(right). ① Hydraulic fluid inlet; ② cylinder; ③ piston; ④ O-ring seal; ⑤ load frame; ⑥ anvils; ⑦ TC backing plates(seats); ⑧ breech; ⑨ front collimator; ⑩ nut; ⑪ top platen; ⑫ tie rod; ⑬ backing disc; ⑭ steel spacer.

    图 2  高压中子衍射谱仪布局图

    Figure 2.  Top view schematic of the HPND at CMRR.

    图 3  单缸柱塞泵与定位系统实物图

    Figure 3.  Hydraulic pump and mobile platform.

    图 4  单凹曲面压砧(左)与双凹曲面压砧(右)实物图

    Figure 4.  The single toroidal anvil (left) and double toroidal anvil (right).

    图 5  压砧、封垫和样品组装示意图

    Figure 5.  The single toroidal (up) and double toroidal (down) assemblies with anvil, gasket, and sample.

    图 6  加压前封垫(a)—(c)与加压后封垫(d)—(f)实物图 (a) 加压前双凹曲面封垫组装; (b) 加压前单凹曲面封垫组装; (c) 加压前单凹曲面封垫与样品; (d) 加压后双凹曲 面封垫; (e) 加压后单凹曲面封垫; (f) 放炮后单凹曲面封垫

    Figure 6.  Picture of the gasket before compression (a)−(c) and after compression (d)−(f): (a) Gasket of DT anvil before compression; (b) gasket of ST anvil before compression; (c) gasket of ST anvil before compression with sample; (d) gasket of DT anvil after compression; (e) gasket of ST anvil before compression; (f) gasket of ST anvil after blowing out.

    图 7  加压曲线示意图

    Figure 7.  Diagram of loading forces-times curve.

    图 8  不同压力下的中子衍射谱

    Figure 8.  Neutron diffraction spectra of different loading forces and different assemblies.

    图 9  样品压力随负载压力的变化曲线

    Figure 9.  Sample pressures-loading forces curves.

    图 10  加压前后封垫的厚度对比

    Figure 10.  Comparison of the thickness of gaskets before and after compression.

    表 1  巴黎-爱丁堡压机型号及主要特征[13]. Capacity为最大加载力, 单位为MPa. 所有尺寸单位为mm

    Table 1.  Types of Pairs-Edinburgh presses and principal characteristics[13]. Capacity is the maximum load in tons. All dimensions are in mm.

    Type Capacity Mass/kg Diam. ram Diam. piston
    VX1 50 10 120 50
    VX2 50 10 120 50
    V3 250 50 248 114
    VX3 200 50 230 114
    V4 250 50 248 114
    VX4 200 50 230 114
    V5 150 35 198 92
    VX5 130 35 180 92
    V7 450 90 305 150
    V8 450 90 305 150
    DownLoad: CSV

    表 2  不同加载压力下衍射峰拟合得到的晶格参数、晶胞体积及样品压力

    Table 2.  The lattice constant, volume, and sample pressures obtained by fitting diffraction peak at different loading force.

    Loading force/MPa hkl for fitting diffraction peaks a V3 P/GPa
    SA-0 (110)(200)(211) 2.86388(24) 23.4889(118) 0
    SA-50 (110)(211)(220) 2.84134(94) 22.9388(462) 4.35(39)
    SA-80 (110)(220) 2.82567(138) 22.5612(677) 7.64(62)
    SA-100 (110)(220) 2.81640(164) 22.3401(802) 9.70(77)
    DA-0 (110)(200)(211) 2.86439(58) 23.5016(288) 0
    DA-50 (110)(211)(220) 2.83609(122) 22.8119(597) 5.53(52)
    DA-80 (110)(220) 2.82200(194) 22.4735(949) 8.56(89)
    DA-100 (110)(220) 2.81255(9) 22.2486(44) 10.70(4)
    DownLoad: CSV

    表 3  测量加压前后封垫的厚度.#1, #2, #5为未发生放炮的封垫, #3, #4为发生放炮的封垫

    Table 3.  The thickness of gaskets before and after compression. #1, #2 and #5 are the gaskets without blowing out during compression. #3, #4 are the gaskets with blowing out.

    Before compression After compression
    Sample/
    mm
    Gasket1/
    mm
    Gasket2/
    mm
    Gasket3/
    mm
    Gasket4/
    mm
    Sample/
    mm
    D1/
    mm
    D2/
    mm
    D3/
    mm
    D4/
    mm
    D5/
    mm
    Loading force/MPa
    #1 4.75 1.75 2.50 3.75 0.75 1.93 0.43 80
    #2 4.75 1.75 2.50 3.70 0.70 1.85 0.35 100
    #3 4.75 1.75 2.50 3.88 0.88 1.69 0.19 78
    #4 4.75 1.75 2.50 3.17 0.17 1.46 0 83
    #5 3.60 1.60 2.50 1.00 1.80 2.75 0.95 1.58 0.78 1.43 0.63 100
    DownLoad: CSV
  • [1]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar

    [2]

    Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar

    [3]

    Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599

    [4]

    Xu J A, Mao H K, Bell P M 1986 Science 232 4756

    [5]

    Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21

    [6]

    Neumann D A 2006 Mater. Today 9 34

    [7]

    Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar

    [8]

    Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar

    [9]

    Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar

    [10]

    Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907

    [11]

    Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar

    [12]

    Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [13]

    Klotz S 2013 Techniques in High Pressure Neutron Scattering (Boca Raton: Taylor & Francis Group CRC Press) pp123−124

    [14]

    Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar

    [15]

    Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar

    [16]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [17]

    Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar

    [18]

    Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar

    [20]

    Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar

  • [1] Yang Gong-Zhang, Xie Lei, Chen Xi-Ping, He Rui-Qi, Han Tie-Xin, Niu Guo-Liang, Fang Lei-Ming, He Duan-Wei. Experimental study of simultaneous high-temperature and high-pressure assembly of Paris-Edinburgh press for neutron diffraction. Acta Physica Sinica, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [2] Dai Yi, Wang Wen-Dan, Fa Zhi-Xiang, Wang Lu, Wang Ju, Liang Ce, Li Xing-Han. Maximum multianvil cell assembly running on WC anvils with certain size. Acta Physica Sinica, 2021, 70(14): 144702. doi: 10.7498/aps.70.20210006
    [3] Jiang Ming-Quan, Li Xin, Fang Lei-Ming, Xie Lei, Chen Xi-Ping, Hu Qi-Wei, Li Qiang, Li Qing-Ze, Chen Bo, He Duan-Wei. Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press. Acta Physica Sinica, 2020, 69(22): 226101. doi: 10.7498/aps.69.20200832
    [4] Zhu Jin-Long,  Zhao Yu-Sheng,  Jin Chang-Qing. Structure and properties of nature clathrate and its application in energy and enviromental science. Acta Physica Sinica, 2019, 68(1): 018203. doi: 10.7498/aps.68.20181639
    [5] Wang Hai-Kuo, Ren Ying, He Duan-Wei, Xu Chao. Force analysis and pressure quantitative measurement for the high pressure cubic cell. Acta Physica Sinica, 2017, 66(9): 090702. doi: 10.7498/aps.66.090702
    [6] Wang Hai-Kuo, He Duan-Wei, Xu Chao, Liu Fang-Ming, Deng Ji-Rui, He Fei, Wang Yong-Kun, Kou Zi-Li. Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil. Acta Physica Sinica, 2013, 62(18): 180703. doi: 10.7498/aps.62.180703
    [7] Sun Guang-Ai, Wang Hong, Wang Xiao-Lin, Chen Bo, Chang Li-Li, Liu Yao-Guang, Sheng Liu-Si, Woo Wanchuck, Kang Mi-Hyun. Insitu neutron diffraction study of micromechanical interaction and phase transformation in dual phase NiTi alloy during tensile loading. Acta Physica Sinica, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] 孙光爱, 陈波, 吴二冬, 李武会, 张功, 汪小琳, V. Ji, T. Pirling, D. Hughes. Neutron diffraction study of aging process effect on phase structure of single crystal superalloy. Acta Physica Sinica, 2011, 60(8): 086102. doi: 10.7498/aps.60.086102
    [9] Liu Xiao-Jing, Zhang Bai-Jun, Li Hai-Bo, Liu Bing, Zhang Chun-Li, Guo Yi-Qing, Zhang Bing-Xin. Quantum theory of neutron double-slit diffraction. Acta Physica Sinica, 2010, 59(6): 4117-4122. doi: 10.7498/aps.59.4117
    [10] Sun Guang-Ai, Darren Hughes, Thilo Pirling, Vincent Ji, Chen Bo, Chen Hua, Wu Er-Dong, Zhang Jun. Neutron diffraction study of stress and lattice mismatch induced by thermo-mechanical fatigue in single crystal superalloys. Acta Physica Sinica, 2009, 58(4): 2549-2555. doi: 10.7498/aps.58.2549
    [11] Lu Yi, Li Qing-An, Di Nai-Li, Cheng Zhao-Hua, Xue Yan-Jie, Zhang Li, Chen Na, Xiao Hong-Wen, Zhang Bai-Sheng, Chen Dong-Feng. Structure and magnetic properties of Nd0.5Sr0.4Pb0.1MnO3 manganites. Acta Physica Sinica, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
    [12] YANG JI-LIAN, ZHANG BAI-SHENG, DING YONG-FAN, ZHOU HUI-MING, JIN LAN, YE CHUN-TANG, YANG YING-CHANG, SUN HONG, KONG LIN-SHU. NEUTRON DIFFRACTION STUDY OF Y(TiFe)12. Acta Physica Sinica, 1989, 38(4): 665-669. doi: 10.7498/aps.38.665
    [13] YANG JI-LIAN, ZHANG BAI-SHENG, XU ZHI-JIANG, ZHOU HUI-MING, JIN LAN, YE CHUN-TANG, YU MEI, ZHOU ZENG-JUN. NEUTRON DIFFRACTION STUDY OF Mn-Zn FERRITE CONTAINING TITANIUM. Acta Physica Sinica, 1987, 36(12): 1610-1613. doi: 10.7498/aps.36.1610
    [14] CHENG ZHI-XU, CHENG YU-FEN, ZHANG PAN-LIN, YAN QI-WEI. ATOMIC POSITIONS OF DEUTERIUM IN DTGS CRYSTAL DETERMINED BY NEUTRON DIFFRACTION. Acta Physica Sinica, 1986, 35(5): 643-652. doi: 10.7498/aps.35.643
    [15] YAN QI-WEI. THE CRYSTAL STRUCTURE ANALYSIS OF KLiSO4 WITH NEUTRON DEFFRACTION AT ROOM TEMPERATURE. Acta Physica Sinica, 1984, 33(3): 425-427. doi: 10.7498/aps.33.425
    [16] ZENG XIANQ-XIN, ZHU JIA-XUAN, JIN LAN, ZHOU HUI-MING, ZHANG BAI-SHEN, YANG JI-LIAN, YANG YING-CHANG, HE WEN-WANG, LIN CHIN, LUO SHANG, PEI XIE-DI. NEUTRON DIFFRACTION STUDIES OF Y(Mn1-xCox)12. Acta Physica Sinica, 1983, 32(12): 1608-1612. doi: 10.7498/aps.32.1608
    [17] YANG YING-CHANG, HE WEN-WANG, LIN QIN, YANG JI-LIAN, ZHOU HUI-MING, ZHU JIA-XUAN, ZENG XIANG-XIN, ZHANG BAI-SHEN, JIN LAN. NEUTRON DIFFRACTION STUDY OF HARD MAGNETIC ALLOY MnAlC. Acta Physica Sinica, 1983, 32(11): 1455-1459. doi: 10.7498/aps.32.1455
    [18] QIAN XIANG-RONG. NEUTRON DIFFRACTION STUDY OF THE ORDER-DISORDER TRANSITION OF AN Fe-Si-Al ALLOY. Acta Physica Sinica, 1981, 30(7): 887-894. doi: 10.7498/aps.30.887
    [19] ZHOU GUO-SHENG. AN APPROXIMATE ANALYSIS ON CONCAVE (PLANE) GRATING-MIRROR STABLE RESONATOR. Acta Physica Sinica, 1978, 27(6): 681-690. doi: 10.7498/aps.27.681
    [20] УСТРОЙСТВО И ХАРАКТЕР НЕЙТРОННОГО ДИФФРАКТОМЕТРА. Acta Physica Sinica, 1961, 17(5): 222-228. doi: 10.7498/aps.17.222
Metrics
  • Abstract views:  9934
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  30 January 2019
  • Accepted Date:  10 April 2019
  • Available Online:  01 June 2019
  • Published Online:  05 June 2019

/

返回文章
返回