-
Since the 1990s, with the benefit of available large-volumed samples, wide detector windows, and portability, Paris-Edinburgh press has been widely used in neutron facilities to study the structures and physical properties of condensed matter under high-pressure extreme conditions. In the present study, We perform high-pressure neutron diffraction experiments in neutron source of China using the Paris-Edinburgh press. The experiments are carried out on a high-pressure neutron diffraction spectrometer (Fenghuang) at China Mianyang Research Reactor (CMRR). Fenghuang is a high-intensity and moderate-resolution diffractometer which has been upgraded from a neutron powder diffractometer and can be used under ambient and extreme conditions. A single cylinder pump with a max load of 200 MPa provides a loading pressure for Paris-Edinburgh press, and a precise mobile platform is used to hang and to locate the Paris-Edinburgh press. Using the tungsten-carbide (WC) toroidal anvils with TiZr gasket, we obtain the neutron diffraction spectra of Fe samples at different pressures successfully. We also obtain the neutron diffraction spectra respectively at pressures of 9.7 GPa and 10.7 GPa by using a WC single-toroidal anvil and a WC double-toroidal anvil under load 100 MPa. The TiZr gasket blows out before the load reaches 100 MPa in the WC single-toroidal anvil assembly, while it remains good in the WC double-toroidal anvil assembly under the same load. The WC single-toroidal anvil assembly becomes unstable under load about 80 MPa, and the WC double-toroidal anvil assembly is still stable under load 100 MPa. Thus, the stability of the double-toroidal anvil assembly is much higher than that of the single-toroidal anvil assembly. It is found that the thickness of the gasket edge is very important for the stability of the assembly during loading. The thicker the edge of the gasket, the more stable the assembly is. The main reason is that the groove of the double concave anvil can enhance the lateral support ability of the gasket, thereby making the double concave surface assembly more stable than the single concave surface assembly.
-
Keywords:
- Paris-Edinburgh press /
- toroidal anvil /
- gasket /
- neutron diffraction
[1] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[2] Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar
[3] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[4] Xu J A, Mao H K, Bell P M 1986 Science 232 4756
[5] Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21
[6] Neumann D A 2006 Mater. Today 9 34
[7] Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar
[8] Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar
[9] Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar
[10] Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907
[11] Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar
[12] Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[13] [14] Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar
[15] Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar
[16] Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar
[17] Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar
[18] Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar
[19] Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar
[20] Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar
-
图 1 巴黎-爱丁堡压机V型(左图)和VX型(右图)的横截面示意图[13]. ①液压入口; ②油缸; ③油腔; ④O型密封圈; ⑤加压主体框架; ⑥压砧; ⑦底座; ⑧后座; ⑨光路通孔; ⑩螺母; ⑪上压块; ⑫螺杆; ⑬垫片; ⑭钢柱
Figure 1. Cross section of Paris-Edinburgh press type V(left) and type VX(right). ① Hydraulic fluid inlet; ② cylinder; ③ piston; ④ O-ring seal; ⑤ load frame; ⑥ anvils; ⑦ TC backing plates(seats); ⑧ breech; ⑨ front collimator; ⑩ nut; ⑪ top platen; ⑫ tie rod; ⑬ backing disc; ⑭ steel spacer.
图 6 加压前封垫(a)—(c)与加压后封垫(d)—(f)实物图 (a) 加压前双凹曲面封垫组装; (b) 加压前单凹曲面封垫组装; (c) 加压前单凹曲面封垫与样品; (d) 加压后双凹曲 面封垫; (e) 加压后单凹曲面封垫; (f) 放炮后单凹曲面封垫
Figure 6. Picture of the gasket before compression (a)−(c) and after compression (d)−(f): (a) Gasket of DT anvil before compression; (b) gasket of ST anvil before compression; (c) gasket of ST anvil before compression with sample; (d) gasket of DT anvil after compression; (e) gasket of ST anvil before compression; (f) gasket of ST anvil after blowing out.
表 1 巴黎-爱丁堡压机型号及主要特征[13]. Capacity为最大加载力, 单位为MPa. 所有尺寸单位为mm
Table 1. Types of Pairs-Edinburgh presses and principal characteristics[13]. Capacity is the maximum load in tons. All dimensions are in mm.
Type Capacity Mass/kg Diam. ram Diam. piston VX1 50 10 120 50 VX2 50 10 120 50 V3 250 50 248 114 VX3 200 50 230 114 V4 250 50 248 114 VX4 200 50 230 114 V5 150 35 198 92 VX5 130 35 180 92 V7 450 90 305 150 V8 450 90 305 150 表 2 不同加载压力下衍射峰拟合得到的晶格参数、晶胞体积及样品压力
Table 2. The lattice constant, volume, and sample pressures obtained by fitting diffraction peak at different loading force.
Loading force/MPa hkl for fitting diffraction peaks a/Å V/Å3 P/GPa SA-0 (110)(200)(211) 2.86388(24) 23.4889(118) 0 SA-50 (110)(211)(220) 2.84134(94) 22.9388(462) 4.35(39) SA-80 (110)(220) 2.82567(138) 22.5612(677) 7.64(62) SA-100 (110)(220) 2.81640(164) 22.3401(802) 9.70(77) DA-0 (110)(200)(211) 2.86439(58) 23.5016(288) 0 DA-50 (110)(211)(220) 2.83609(122) 22.8119(597) 5.53(52) DA-80 (110)(220) 2.82200(194) 22.4735(949) 8.56(89) DA-100 (110)(220) 2.81255(9) 22.2486(44) 10.70(4) 表 3 测量加压前后封垫的厚度.#1, #2, #5为未发生放炮的封垫, #3, #4为发生放炮的封垫
Table 3. The thickness of gaskets before and after compression. #1, #2 and #5 are the gaskets without blowing out during compression. #3, #4 are the gaskets with blowing out.
Before compression After compression Sample/
mmGasket1/
mmGasket2/
mmGasket3/
mmGasket4/
mmSample/
mmD1/
mmD2/
mmD3/
mmD4/
mmD5/
mmLoading force/MPa #1 4.75 1.75 2.50 — — 3.75 0.75 1.93 0.43 — — 80 #2 4.75 1.75 2.50 — — 3.70 0.70 1.85 0.35 — — 100 #3 4.75 1.75 2.50 — — 3.88 0.88 1.69 0.19 — — 78 #4 4.75 1.75 2.50 — — 3.17 0.17 1.46 0 — — 83 #5 3.60 1.60 2.50 1.00 1.80 2.75 0.95 1.58 0.78 1.43 0.63 100 -
[1] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73Google Scholar
[2] Tian Y, Xu B, Yu D, Ma Y, Wang Y, Jiang Y, Hu W, Tang C, Gao Y, Luo K, Zhao Z, Wang L, Wen B, He J, Liu Z 2013 Nature 493 385Google Scholar
[3] Irifune T, Kurio A, Sakamoto S, Inoue T, Sumiya H 2003 Nature 421 599
[4] Xu J A, Mao H K, Bell P M 1986 Science 232 4756
[5] Sun G, Zhang C, Chen B, Gong J, Peng S 2016 Neutron News 27 21
[6] Neumann D A 2006 Mater. Today 9 34
[7] Shull C G, Strauser W A, Wollan E O 1951 Phys. Rev. 83 333Google Scholar
[8] Fang L, Wang Y, Chen X, Sun G, Chen B, Peng S 2014 Chin. Phys. B 23 110701Google Scholar
[9] Ni X, Fang L, Li X, Chen X, Xie L, He D, Kou Z 2018 Chin. Phys. Lett. 35 040701Google Scholar
[10] Besson J M, Nelmes R J, Hamel G, Loveday J S, Weill G, Hull S 1992 Physica B 180−181 907
[11] Klotz S, Strässle T, Rousse G, Hamel G, Pomjakushin V 2005 Appl. Phys. Lett. 86 031917Google Scholar
[12] Klotz S, Godec Y L, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar
[13] [14] Lei L, Zhang L, Gao S, Hu Q, Fang L, Chen X, Xia Y, Wang X, Ohfuji H, Kojima Y, Redfern S A T, Zeng Z, Chen B, He D, Irifune T 2018 J. Alloys Compd. 752 99Google Scholar
[15] Xia Y, Wu R, Zhang Y, Liu S, Du H, Han J, Wang C, Chen X, Xie L, Yang Y, Yang J 2017 Phys. Rev. B 96 064440Google Scholar
[16] Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar
[17] Wang Y, Dong X, Tang X, Zheng H, Li K, Lin X, Fang L, Sun G, Chen X, Xie L, Bull C L, Funnell N P, Hattori T, Sano-Furukawa A, Chen J, Hensley D K, Cody G, Ren Y, Lee H H, Mao H K 2019 Angew. Chem. 58 1468Google Scholar
[18] Xie L, Chen X, Fang L, Sun G, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R, Bulkin A P, Kalinin S I, Wang Y, Wang X 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar
[19] Mao H K, Bassett W A, Takahashi T 1967 J. Appl. Phys. 38 272Google Scholar
[20] Fang J, Bull C L, Loveday J S, Nelmes R J, Kamenev K V 2012 Rev. Sci. Instrum. 83 093902Google Scholar
Catalog
Metrics
- Abstract views: 9934
- PDF Downloads: 166
- Cited By: 0