-
Semiconductor laser is one of the most critical components in the field of modern communication. Research and development of single-mode semiconductor laser with high stability, high power, high beam quality and narrow line width is an important research area in this field. In this paper, A novel edge-emitting semiconductor laser diode structure is proposed. In the structure an active multimode interference waveguide structure serves as a main gain region. To modulate the longitudinal mode of the laser, a gain-coupled distributed feedback(DFB) laser based on high order surface gain coupled grating is introduced into the structure as well. The novel structure is then fabricated and compared with an conventional DFB laser. The experimental results show that higher slope efficiency and output power are achieved with the proposed structure than those with the conventional distributed feedback semiconductor lasers. The novel structure is also compared with conventional MMI laser with only Fabry-Parot(FP) cavity. The result shows that the proposed structure has higher beam quality and better stability than the FP cavity multimode interference waveguide lasers. To enhance the gain contrast in the quantum wells without introducing the effective index-coupled effect, the groove length and depth are well designed. Our device provides a single longitudinal mode with the maximum CW output power up to 53.8 mW/facet at 981.21 nm and 400 mA without facet coating, 3 dB linewidth < 13.6 pm, and SMSR > 32 dB. Optical bistable characteristic is observed with a threshold current difference. Meanwhile, by using high-order distribution feedback grating formed by shallow surface etching in the process of chip design and fabrication, the proposed structure of laser diode can realize regrowth freely and only micron-scale precision i-line lithography is required. Such a structure with simple fabrication process and low manufacturing cost has great potential for commercial mass production.
-
Keywords:
- distributed feedback grating /
- active multimode interference waveguide /
- edgeemitting semiconductor laser diode
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344
[3] Dieckmann A 1994 Electron. Lett. 30 308Google Scholar
[4] Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar
[5] Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar
[6] Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar
[7] Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar
[8] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344
[9] Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar
[10] Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar
[11] Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar
[12] Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683
[13] Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar
[14] Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar
[15] Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar
[16] Guo R J et al. 2016 IEEE Photon. J. 81 503007
[17] Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar
[18] Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar
[19] Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar
[20] Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399
[21] Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27
[22] Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413
[23] Gao F et al. 2018 Opt. Comm. 410 936Google Scholar
[24] Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar
-
-
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344
[3] Dieckmann A 1994 Electron. Lett. 30 308Google Scholar
[4] Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar
[5] Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar
[6] Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar
[7] Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar
[8] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344
[9] Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar
[10] Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar
[11] Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar
[12] Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683
[13] Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar
[14] Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar
[15] Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar
[16] Guo R J et al. 2016 IEEE Photon. J. 81 503007
[17] Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar
[18] Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar
[19] Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar
[20] Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399
[21] Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27
[22] Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413
[23] Gao F et al. 2018 Opt. Comm. 410 936Google Scholar
[24] Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar
Catalog
Metrics
- Abstract views: 14090
- PDF Downloads: 229
- Cited By: 0