Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Memcapacitor-based multivibrator and its experiments

Gu Mei-Yuan Liu Jing-Biao Wang Guang-Yi Liang Yan Li Fu-Peng

Citation:

Memcapacitor-based multivibrator and its experiments

Gu Mei-Yuan, Liu Jing-Biao, Wang Guang-Yi, Liang Yan, Li Fu-Peng
PDF
HTML
Get Citation
  • Memcapacitor is a kind of non-linear capacitor with memory capability. In order to study the electrical characteristics of memcapacitor and its application circuit, a quadratic model of voltage-controlled memcapacitor is proposed, and an emulator which can dynamically simulate the qv characteristics of the memcapacitor is designed by using a current feedback operational amplifier, multiplier and other devices. The emulator does not need to be converted by any memristor or meminductor. It can work in floating or grounding state. The constitutive relation of the memcapacitor emulator is deduced, and the circuit parameters of the emulator are designed. Based on the simulations and experimental results, the pinched hysteresis loop and its dependence on frequency are verified. In addition, the range of the memcapacitance under periodic signal excitation is discussed and the influence of periodic excitation signal on the range of memcapacitance is analyzed. Through observing the dynamic route map (DRM) of the memcapacitor, its nonvolatility and the stability of the equilibrium point are also studied. The simulation results show that the memcapacitor can exhibit infinite stable equilibrium points and can be stabilized at any equilibrium state. With respect to pulse excitation signal, the effects of pulse width and amplitude on the switching on or off of the state for the memcapacitor is analyzed, and the corresponding switching method and rule are proposed. This characteristic of memcapacitor makes it have potential applications in non-volatile memory, neural network and other fields. Based on the proposed memcapacitor model, a multivibrator circuit is designed. Then, the working principle of the oscillator is analyzed, and the equation of oscillator is derived. The output voltage of the oscillator, the terminal voltage of the memcapacitor, the flux and the charge of the memcapacitor, and the pinched hysteretic curve of the memcapacitor during oscillation are tested experimentally. Besides, various oscillation waveforms whose frequency and duty cycle are different are observed and further analyzed. The circuit structure of the memcapacitor multivibrator designed in this paper is very simple. It can generate stable rectangular wave signals with controllable frequency and duty cycle, and it can be used in testing signal or driving the device.
      Corresponding author: Liu Jing-Biao, ab@hdu.edn.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771176, 61801154) and Zhejiang Provincial Key Lab of Equipment Electronics, China (Grant No. 2019E10009)
    [1]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [2]

    Wang G Y, Cai B Z, Jin P P, Hu T L 2017 Chin. Phys. B 25 010503

    [3]

    Pershin Y V, Di Ventra M 2012 Proc. IEEE 100 2071Google Scholar

    [4]

    Driscoll T, Quinn J, Klein S, Kim H T, Kim B J 2010 Appl. Phys. Lett. 97 093502Google Scholar

    [5]

    Li Y F, Yang C Y, Yu Y B 2017 Proceedings of the 36th Chinese Control Conference Dalian, China, July 26−28, 2017 p5110

    [6]

    Flak J, Lehtonen E, Laiho M, Rantala A, Prunnila M, Haatainen T 2014 Semicond. Sci. Technol. 29 104012Google Scholar

    [7]

    Noh Y J, Baek Y J, Hu Q, Kang C J, Choi Y J, Lee H H 2015 IEEE Trans. Nanotechnol. 14 798Google Scholar

    [8]

    Yuan F, Wang G Y, Shen Y R, Wang X Y 2016 Nonlinear Dyn. 86 37Google Scholar

    [9]

    Fouda M E, Khatib M A, Radwan A G 2013 25th International Conference on Microelectronics Beirut, Lebanon, December 15−18, 2013 p978

    [10]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520Google Scholar

    [11]

    Biolek D, Biolkova V, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala, Lumpur, Malaysia, December 6−9, 2010 p800

    [12]

    Yu D S, Liang Y, Chen H 2013 IEEE Trans. Circuits Syst. II, Exp. Briefs 60 207Google Scholar

    [13]

    Yu D S, Liang Y, Herbert H C I 2014 IEEE Trans. Circuits Syst. II, Exp. Briefs 61 758Google Scholar

    [14]

    Yu D S, Zhou Z, Herbert H C I 2016 IEEE Trans. Circuits Syst. II, Exp. Briefs 63 1101Google Scholar

    [15]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Inform. Technol. 39 1626

    [16]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [17]

    Jin P P, Wang G Y, Herbert H C I 2018 IEEE Trans. Circuits Syst. II, Exp. Briefs 65 246Google Scholar

    [18]

    Chua L O 2018 Appl. Phys. A-Mater. 124 563Google Scholar

    [19]

    Yu D S, Herbert H C I 2014 IEEE Trans. Circuits Syst. I, Reg. Papers 61 2888Google Scholar

    [20]

    Pershin Y V, Massimiliano D V 2011 Electron. Lett. 47 243Google Scholar

  • 图 1  忆容器的q-v特性曲线

    Figure 1.  q-v pinched hysteresis loops of memcapacitor

    图 2  正弦交流电激励下忆容器${C_{\rm{m}}}$${v_{\rm C}}$$\phi $的时域波形(a) ${C_{\rm{m}}}$; (b) ${v_C}$; (c) $\phi $

    Figure 2.  Time domain waveforms of Cm, vC and flux under periodic excitation signal: (a) ${C_{\rm{m}}}$; (b) ${v_C}$; (c) $\phi $.

    图 3  忆容器的动态路径图(${\rm{d}}\phi /{\rm{d}}t \text- \phi $) (a)动态路径图; (b)忆容器电路和Vs波形

    Figure 3.  Dynamic path map of memcapacitor (${\rm{d}}\phi /{\rm{d}}t \text- \phi $): (a)Dynamic path map ; (b) Memcapacitor circuit and Vs waveform.

    图 4  压控型忆容器仿真器

    Figure 4.  A voltage-controlled memcapacitor emulator

    图 5  忆容器仿真器的$q \text- v$曲线(横坐标和纵坐标分别对应于${v_{AB}}$${v_w}$) (a)仿真电路的测试结果图, 纵坐标显示范围[–10, 10] V, 横坐标显示范围[–5, 5] V; (b)硬件实验电路的测试结果, 横坐标和纵坐标显示分别为1 V/格和2 V/格

    Figure 5.  q-v pinched hysteresis loops of the memcapacitor simulator: the abscissa and ordinate correspond to ${v_{AB}}$ and ${v_w}$, respectively: (a) Results of circuit simulation.The display range of ordinates is [–10, 10] V, and the display range of abscissa is [–5, 5] V; (b) result of hardware experiment circuit; the abscissa and ordinates are shown as 1 V/lattice and 2 V/lattice, respectively.

    图 6  基于忆容器的多谐振荡器

    Figure 6.  Multivibrator based on memcapacitor.

    图 7  ${R_{10}}{C_{\rm{m}}}$回路中忆容器的磁通、电压和${v_R}$的时域波形 (a) $\phi $; (b) vC; (c) vO; (d) vR

    Figure 7.  In R10Cm circuit, the time-domain waveforms of flux and voltage of the memcapacitor and voltage vR: (a) $\phi $; (b) vC; (c) vO; (d) vR.

    图 8  忆容器多谐振荡器仿真电路波形(${v_{\rm{O}}}$${v_w}$${v_C}$纵坐标的显示范围均为$[-5.0, 5.0]\;{\rm{V}}$, ${v_{{\rm{U}}3}}$纵坐标的显示范围是$[ - 2.0, 2.0]\;{\rm{V}}$)

    Figure 8.  Simulation waveforms of memcapacitor multivibrator: The display range of vertical coordinates ${v_{\rm{O}}}$${v_w}$ and ${v_C}$ are all $[ - 5.0, 5.0]\;{\rm{V}}$, but the display range of vertical coordinates of ${v_{{\rm{U}}3}}$ is $[ - 2.0, 2.0]\;{\rm{V}}$.

    图 9  硬件电路实测振荡波形(${v_{\rm{o}}}$${v_C}$${v_w}$幅值均为2 V/格, ${v_{{\rm{U}}3}}$为500 mV/格, 时间轴均为100 ms/格)

    Figure 9.  Measurement of oscillating waveforms in hardware circuit: (The vertical axes of ${v_{\rm{o}}}$, ${v_C}$ and ${v_w}$ are both 2 V/lattice, the vertical axes of ${v_{{\rm{U}}3}}$ is 500 mV/lattice, The horizontal axes of all voltages are 100 ms/lattice).

    图 10  ${R_{12}}/{R_{11}}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Figure 10.  Curve of Oscillator Performance Parameters with Circuit parameter changes (${R_{12}}/{R_{11}}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 11  ${R_{10}}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Figure 11.  Curve of oscillator performance parameters with circuit parameter changes (${R_{10}}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 12  ${C_2}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Figure 12.  Curve of Oscillator Performance Parameters with Circuit parameter changes (${C_2}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 13  忆容器振荡器硬件电路实验振荡波形(图(a)和(b)中${v_{\rm{O}}}$${v_C}$${v_w}$的纵轴均为2 V/格) (a) ${R_{12}}/{R_{11}} = 5$, 其中${v_{{\rm{U}}3}}$纵轴为100 mV/格, 时间轴为50 ms/格; (b) ${R_{12}}/{R_{11}} = 2.427$, 其中${v_{{\rm{U}}3}}$纵轴为5 V/格, 时间轴为100 ms/格

    Figure 13.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) ${R_{12}}/{R_{11}} = 5$; (b) ${R_{12}}/{R_{11}} = 2.427$. The vertical axes of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig(a) and Fig (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig(a) are 100 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig(b) are 5 V/lattice and 100 ms/lattice, respectively.

    图 14  忆容振荡器硬件电路实验振荡波形(图中${v_{\rm{O}}}$${v_C}$${v_w}$纵轴均为2 V/格, 图(a)中${v_{{\rm{U}}3}}$纵轴为500 mV/格, 时间轴为50 ms/格, 图(b)中${v_{{\rm{U}}3}}$纵轴为5 V/格, 时间轴为100 ms/格) (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$

    Figure 14.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$. The vertical axis of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig. (a) and Fig. (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (a) are 500 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (b) are 5 V/lattice and 100 ms/lattice, respectively.

    图 15  忆容振荡器硬件电路实验振荡波形(图中${v_{\rm{O}}}$${v_C}$${v_w}$纵轴均为2 V/格, 图(a)中${v_{{\rm{U3}}}}$纵轴为500 mV/格, 时间轴为50 ms/格, 图(b)中${v_{{\rm{U3}}}}$纵轴为2 V/格, 时间轴为100 ms/格) (a) C2 = 146 nF; (b) C2 = 256 nF

    Figure 15.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) C2 = 146 nF; (b) C2 = 256 nF. The vertical axes of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig. (a) and Fig. (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (a) are 500 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (b) are 2 V/lattice and 100 ms/lattice, respectively.

    图 16  ${R_{10}}$为不同值时振荡电路中忆容器的滞回曲线(横坐标和纵坐标分别对应于${v_{AB}}$${v_w}$) (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$

    Figure 16.  The pinched hysteresis loops of memcapacitor with different values of R10 in oscillating circuit: (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$. The horizontal and vertical axes correspond to ${v_{AB}}$ and ${v_w}$, respectively.

  • [1]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [2]

    Wang G Y, Cai B Z, Jin P P, Hu T L 2017 Chin. Phys. B 25 010503

    [3]

    Pershin Y V, Di Ventra M 2012 Proc. IEEE 100 2071Google Scholar

    [4]

    Driscoll T, Quinn J, Klein S, Kim H T, Kim B J 2010 Appl. Phys. Lett. 97 093502Google Scholar

    [5]

    Li Y F, Yang C Y, Yu Y B 2017 Proceedings of the 36th Chinese Control Conference Dalian, China, July 26−28, 2017 p5110

    [6]

    Flak J, Lehtonen E, Laiho M, Rantala A, Prunnila M, Haatainen T 2014 Semicond. Sci. Technol. 29 104012Google Scholar

    [7]

    Noh Y J, Baek Y J, Hu Q, Kang C J, Choi Y J, Lee H H 2015 IEEE Trans. Nanotechnol. 14 798Google Scholar

    [8]

    Yuan F, Wang G Y, Shen Y R, Wang X Y 2016 Nonlinear Dyn. 86 37Google Scholar

    [9]

    Fouda M E, Khatib M A, Radwan A G 2013 25th International Conference on Microelectronics Beirut, Lebanon, December 15−18, 2013 p978

    [10]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520Google Scholar

    [11]

    Biolek D, Biolkova V, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala, Lumpur, Malaysia, December 6−9, 2010 p800

    [12]

    Yu D S, Liang Y, Chen H 2013 IEEE Trans. Circuits Syst. II, Exp. Briefs 60 207Google Scholar

    [13]

    Yu D S, Liang Y, Herbert H C I 2014 IEEE Trans. Circuits Syst. II, Exp. Briefs 61 758Google Scholar

    [14]

    Yu D S, Zhou Z, Herbert H C I 2016 IEEE Trans. Circuits Syst. II, Exp. Briefs 63 1101Google Scholar

    [15]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Inform. Technol. 39 1626

    [16]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [17]

    Jin P P, Wang G Y, Herbert H C I 2018 IEEE Trans. Circuits Syst. II, Exp. Briefs 65 246Google Scholar

    [18]

    Chua L O 2018 Appl. Phys. A-Mater. 124 563Google Scholar

    [19]

    Yu D S, Herbert H C I 2014 IEEE Trans. Circuits Syst. I, Reg. Papers 61 2888Google Scholar

    [20]

    Pershin Y V, Massimiliano D V 2011 Electron. Lett. 47 243Google Scholar

  • [1] Gou Li-Dan. On noncommutative energy spectra in two-dimensional coupling harmonic oscillator. Acta Physica Sinica, 2021, 70(20): 200301. doi: 10.7498/aps.70.20210092
    [2] Ren Kuan, Zhang Ke-Jia, Qin Xi-Zi, Ren Huan-Xin, Zhu Shou-Hui, Yang Feng, Sun Bai, Zhao Yong, Zhang Yong. Research progress of neuromorphic computation based on memcapacitors. Acta Physica Sinica, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [3] Liu Jing-Liang, Chen Xin-Yu, Wang Rui-Ming, Wu Chun-Ting, Jin Guang-Yong. Design and analysis of 90° image rotating four-mirror non-planar ring resonator based on mid-infrared optical parametric oscillator beam quality optimization. Acta Physica Sinica, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [4] Han Xiu-Feng, Wan Cai-Hua. Recent progress of nonvolatile, multifunctional and programmable spin logic. Acta Physica Sinica, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [5] Wang Xiao-Yuan, Yu Jun, Wang Guang-Yi. Simulink modeling of memristor, memcapacitor, meminductor and their characteristics analysis. Acta Physica Sinica, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [6] Xu Bi-Rong, Wang Guang-Yi. Meminductive Wein-bridge chaotic oscillator. Acta Physica Sinica, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [7] Huang Gang-Bin, Wang Ju, Wang Wen-Rui, Jia Shi, Yu Jin-Long. An optoelectronic oscillator based on series resonance cavity. Acta Physica Sinica, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [8] Aili Mieralimujiang, Mamat Mamatrishat, Ghupur Yasenjan. Thermodynamic properties of harmonic oscillator system in noncommutative phase space. Acta Physica Sinica, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] Li Hong-Xia, Jiang Yang, Bai Guang-Fu, Shan Yuan-Yuan, Liang Jian-Hui, Ma Chuang, Jia Zhen-Rong, Zi Yue-Jiao. Single mode optoelectronic oscillator assisted by active ring resonance cavity filtering. Acta Physica Sinica, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [10] Yuan Fang, Wang Guang-Yi, Jin Pei-Pei. Study on dynamical characteristics of a meminductor model and its meminductor-based oscillator. Acta Physica Sinica, 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [11] Huang Li-Ping, Hong Bin-Bin, Liu Chang, Tang Chang-Jian. Study on 220 GHz third harmonic photonic band gap cavity gyrotron oscillator. Acta Physica Sinica, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [12] Yu Qing, Bao Bo-Cheng, Hu Feng-Wei, Xu Quan, Chen Mo, Wang Jiang. Wien-bridge chaotic oscillator based on fisrt-order generalized memristor. Acta Physica Sinica, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
    [13] Chai Yu-Hua, Guo Yu-Xiu, Bian Wei, Li Wen, Yang Tao, Yi Ming-Dong, Fan Qu-Li, Xie Ling-Hai, Huang Wei. Progress of flexible organic non-volatile memory field-effect transistors. Acta Physica Sinica, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [14] Luo Yao-Tian, Tang Chang-Jian. Self-consistent nonlinear theory of gyrotron oscillator with photonic-band-gap cavity. Acta Physica Sinica, 2011, 60(1): 014104. doi: 10.7498/aps.60.014104
    [15] Zhang Xiu-Lan, Liu Heng, Yu Hai-Jun, Zhang Wen-Hai. Hamiltonian spectrum for three coupled harmonic oscillators in non-commutative space. Acta Physica Sinica, 2011, 60(4): 040303. doi: 10.7498/aps.60.040303
    [16] Bao Bo-Cheng, Liu Zhong, Xu Jian-Ping. Dynamical analysis of memristor chaotic oscillator. Acta Physica Sinica, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [17] Wu Bo, Cai Shuang-Shuang, Shen Jian-Wei, Shen Yong-Hang. Widely tunable optical parametric oscillators base on periodically poled MgO doped LiNbO3. Acta Physica Sinica, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [18] Zhang Xian-Bin, Shi Wei. Optimize the output performance by shortening the cavity length of the THz electromagnetic wave parametric oscillator. Acta Physica Sinica, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [19] PING-CHUAN FENG, PENG-FEI HSU. PHASE COMPENSATION IN POWER OSCILLATORS. Acta Physica Sinica, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [20] PING-CHUAN FENG. 强力振荡器之板极效率. Acta Physica Sinica, 1949, 7(4): 249-257. doi: 10.7498/aps.7.43
Metrics
  • Abstract views:  9795
  • PDF Downloads:  122
  • Cited By: 0
Publishing process
  • Received Date:  31 May 2019
  • Accepted Date:  29 August 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回