Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structure stability, magneto-electronic properties, and modulation effects of Fe3GeTe2 nanoribbons

Han Jia-Ning Fan Zhi-Qiang Zhang Zhen-Hua

Citation:

Structure stability, magneto-electronic properties, and modulation effects of Fe3GeTe2 nanoribbons

Han Jia-Ning, Fan Zhi-Qiang, Zhang Zhen-Hua
PDF
HTML
Get Citation
  • Fe3GeTe2 monolayer is one of the currently fabricated 2-dimensional (2D) ferromagnetic materials. Based on the first principle of density functional theory, we here study the structural stability and magneto-electronic properties of nanoribbons NR(n) obtained by cutting 2D Fe3GeTe2. The calculated binding energy and molecular dynamics simulation results identify that nanoribbons are rather stable. The large magnetic moment and magnetized energy prove the extremely high magnetism stability for NR(n). Moreover, with the increase of the width, the magnetic moment of the nanoribbons generally increases, and gradually tends to a stable value. In particular, the nanoribbons possess a high spin polarization efficiency at the Fermi level (SPF). For example, the SPF for NR(5) is up to 100%. With the width variation of the nanoribbons, the SPF has a significant odd-even oscillating effect, that is, the spin-polarization of the odd nanoribbons is higher than that of the adjacent even nanoribbons, especially when the width is in the range of n ≤ 12. This means that the α-spin and β-spin are quite different in the density of states at the Fermi level when the width is odd or even. This may be caused by the difference of the quantum confinement effect for the odd or even nanoribbons, respectively. Meanwhile, when the width of the nanoribbons is wide enough, the odd-even oscillation effect of the spin polarizability is stabilized in a relatively small range, and the nanoribbons finally tend to be 2D Fe3GeTe2 monolayer. The nanoribbons have an obvious advantage on SPF over the 2D Fe3GeTe2 monolayer. In addition, the calculation of the strain effect demonstrates that the strain can flexibly tune the SPF varying from approximately zero to 85.6%, and the SPF reaches a maximum of 85.6% at a stretch of 4%, which is a fairly high value; then reaches a minimum at a stretch of 8%, almost being zero, which means that a mechanical switch can be designed to control the low-bias spin transition, allowing it work between high spin polarization and spin unpolarization.
      Corresponding author: Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 11674039)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva1 I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [3]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [4]

    Zeng Y, Wu D, Cao X, Zhou W, Tang L, Chen K 2019 Adv. Funct. Mater. 531 1800390Google Scholar

    [5]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [6]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [7]

    Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Rubio A 2014 Phys. Rev. B 90 121408Google Scholar

    [8]

    Latzke D W, Zhang W, Suslu A, Chang T R, Lin H, Jeng H T, Lanzara A 2015 Phys. Rev. B 91 235202Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [10]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [11]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B 51 6868

    [12]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [13]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [14]

    Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Kim P 2016 Nature Phys. 12 328Google Scholar

    [15]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [16]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [17]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Xie B P 2014 Nat. Commun. 5 5044Google Scholar

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Ding H, Ou Y B, Deng B, Chang K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [19]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Eur. J. Inorg. Chem. 2006 1561Google Scholar

    [20]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Zou J 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [21]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P, 2015 Phys. Rev. B 92 035407Google Scholar

    [22]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [23]

    Gong C 2017 Nature 546 265Google Scholar

    [24]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Chem. Inform. 37 1561

    [25]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [26]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Wang J 2018 Nature 563 94Google Scholar

    [27]

    Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michiola C, Fang M 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar

    [28]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Wu W 2018 Nature Mater. 17 778Google Scholar

    [29]

    Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Xiong Y 2017 Phys. Rev. B 96 134428Google Scholar

    [30]

    Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Xie D 2018 Sci. Adv. 4 6791Google Scholar

    [31]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [32]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett 97 216803Google Scholar

    [33]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2008 Nano Lett. 8 1562Google Scholar

    [34]

    Zhang R Y, Zheng J M, Jiang Z Y 2018 Chin. Phys. Lett. 35 017302Google Scholar

    [35]

    Han X, Morgan Stewart H, Shevlin S A, Catlow C R A Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [36]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    Wu D, Cao X, Chen S, Tang L, Feng Y, Chen K, Zhou W 2019 J. Mater. Chem. A 7 19037Google Scholar

    [39]

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101

    [40]

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 物理学报 66 246101Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 246101Google Scholar

    [41]

    Hashmi A, Hong J 2017 物理学报 66 238501Google Scholar

    Hashmi A, Hong J 2017 J. Phys. Chem. C 66 238501Google Scholar

    [42]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

  • 图 1  (a) 2D FGT单层原子结构的顶视图和边视图, 阴影部分表示所剪裁的纳米带NR(n); (b)宽度n = 9时的FGT纳米带, 黑色虚线框代表纳米带的一个单胞

    Figure 1.  (a) Top and side view of atomic structure for 2D FGT monolayer, the shaded region indicates the cutting nanoribbon NR(n); (b) the FGT nanoribbon with width n = 9, and the black dashed-line box represents the unit cell of NR(9).

    图 2  退火模拟前后的FGT纳米带的结构图 (a) NR(4); (b) NR(5); (c) NR(6); (d) NR(8); (e) NR(9)

    Figure 2.  The ribbon structures before and after annealing simulation: (a) NR(4); (b) NR(5); (c) NR(7); (d) NR(8); (e) NR(9).

    图 3  自旋极化电荷密度 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8)和(e) NR(9), 等值面值取为0.01|e–3

    Figure 3.  The spin-polarized charge density: (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9), the isosurface value is set as 0.01|e–3.

    图 4  投影能带结构 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8)和(e) NR(9); (f)不同宽度NR(n)的磁性原子的平均磁矩, 其中n为FGT纳米带的宽度

    Figure 4.  The projected band structure for (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9), respectively; (f) magnetic moment per magnetic atom for NR(n) versus ribbon widths, where n represents the width of the FGT nanoribbons.

    图 5  不同FGT纳米带的总态密度(DOS)、投影态密度(PDOS)以及费米能级上的自旋极化率 (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8) 和 (e) NR(9); (f) 不同宽度纳米带NR(n)的在费米能级上自旋极化率SPF, 其中n为FGT纳米带的宽度

    Figure 5.  The DOS and PDOS for (a) NR(4), (b) NR(5), (c) NR(6), (d) NR(8), and (e) NR(9); (f) the spin polarity efficiency at the Fermi level (SPF) for ribbons with various different widths NR(n), where n represents the width of the FGT nanoribbons.

    图 6  应变效应 (a) 对NR(9)施加拉伸应力的模型图, 仅铁磁基态下被考虑; (b)施加不同应变时的态密度(DOS)变化情况; (c)费米能级上的自旋极化率SPF 随应变的变化; (d)磁矩(M)和磁化能(EM)随应变的变化

    Figure 6.  Strain effects: (a) The schematic for NR(9) applied by stretching strain, only the FM ground state is taken into account; (b) the DOS versus strains; (c) the spin polarity efficiency at the Fermi level SPF versus strains; (d) the magnetic moment (M) and magnetize energy (EM) versus strains.

    表 1  FGT纳米带的结合Eb(单位: eV/atom), 磁化能EM (单位: meV/atom)和费米能级上的自旋极化率SPF(%), MM 和HM分别表示磁金属和半金属

    Table 1.  The binding energy Eb (in eV/atom), magnetic energy EM (in meV /atom), and spin polarized efficiency SPF(%) for FGT nanoribbons, MM and HM represent the magnetic metal and half-metal, respectively.

    StructureNR(4)NR(5)NR(6)NR(8)NR(9)
    Eb–4.472–4.545–4.590–4.648–4.665
    EM132.958135.814186.930130.815129.212
    SPF29.57010055.91811.57366.823
    Magnetic phaseMMHMMMMMMM
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva1 I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451Google Scholar

    [3]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [4]

    Zeng Y, Wu D, Cao X, Zhou W, Tang L, Chen K 2019 Adv. Funct. Mater. 531 1800390Google Scholar

    [5]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [6]

    Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [7]

    Tang P, Chen P, Cao W, Huang H, Cahangirov S, Xian L, Rubio A 2014 Phys. Rev. B 90 121408Google Scholar

    [8]

    Latzke D W, Zhang W, Suslu A, Chang T R, Lin H, Jeng H T, Lanzara A 2015 Phys. Rev. B 91 235202Google Scholar

    [9]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [10]

    Kuang W, Hu R, Fan Z, Zhang Z 2019 Nanotechnology 30 145201Google Scholar

    [11]

    Blase X, Rubio A, Louie S G, Cohen M L 1995 Phys. Rev. B 51 6868

    [12]

    Zhang S, Yan Z, Li Y, Chen Z, Zeng H 2015 Angew. Chem. Int. Ed. 54 3112Google Scholar

    [13]

    Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Zeng H 2016 Angew. Chem. Int. Ed. 55 1666Google Scholar

    [14]

    Efetov D K, Wang L, Handschin C, Efetov K B, Shuang J, Cava R, Kim P 2016 Nature Phys. 12 328Google Scholar

    [15]

    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar

    [16]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262Google Scholar

    [17]

    Peng R, Xu H C, Tan S Y, Cao H Y, Xia M, Shen X P, Xie B P 2014 Nat. Commun. 5 5044Google Scholar

    [18]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Ding H, Ou Y B, Deng B, Chang K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [19]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Eur. J. Inorg. Chem. 2006 1561Google Scholar

    [20]

    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Zou J 2017 npj 2D Mater. Appl. 1 30Google Scholar

    [21]

    Zhuang H L, Xie Y, Kent P R C, Ganesh P, 2015 Phys. Rev. B 92 035407Google Scholar

    [22]

    Siberchicot B, Jobic S, Carteaux V, Gressier P, Ouvrard G 1996 J. Phys. Chem. 100 5863Google Scholar

    [23]

    Gong C 2017 Nature 546 265Google Scholar

    [24]

    Deiseroth H J, Aleksandrov K, Reiner C, Kienle L, Kremer R K 2006 Chem. Inform. 37 1561

    [25]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [26]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Wang J 2018 Nature 563 94Google Scholar

    [27]

    Chen B, Yang J H, Wang H D, Imai M, Ohta H, Michiola C, Fang M 2013 J. Phys. Soc. Jpn. 82 124711Google Scholar

    [28]

    Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Wu W 2018 Nature Mater. 17 778Google Scholar

    [29]

    Wang Y, Xian C, Wang J, Liu B, Ling L, Zhang L, Xiong Y 2017 Phys. Rev. B 96 134428Google Scholar

    [30]

    Zhang Y, Lu H, Zhu X, Tan S, Feng W, Liu Q, Xie D 2018 Sci. Adv. 4 6791Google Scholar

    [31]

    Gan Y, Sun L, Banhart F 2008 Small 4 587Google Scholar

    [32]

    Son Y W, Cohen M L, Louie S G 2006 Phys Rev. Lett 97 216803Google Scholar

    [33]

    Botello-Méndez A R, López-Urías F, Terrones M, Terrones H 2008 Nano Lett. 8 1562Google Scholar

    [34]

    Zhang R Y, Zheng J M, Jiang Z Y 2018 Chin. Phys. Lett. 35 017302Google Scholar

    [35]

    Han X, Morgan Stewart H, Shevlin S A, Catlow C R A Guo Z X 2014 Nano Lett. 14 4607Google Scholar

    [36]

    Brandbyge M, Mozos J L, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [37]

    Zhu Z, Zhang Z H, Wang D, Deng X Q, Fan Z Q, Tang G P 2015 J. Mater. Chem. C 3 9657Google Scholar

    [38]

    Wu D, Cao X, Chen S, Tang L, Feng Y, Chen K, Zhou W 2019 J. Mater. Chem. A 7 19037Google Scholar

    [39]

    Zhang H L, Sun L, Han J N 2017 Acta Phys. Sin. 66 246101

    [40]

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 物理学报 66 246101Google Scholar

    Liu J, Hu R, Fan Z Q, Zhang Z H 2017 Acta Phys. Sin. 66 246101Google Scholar

    [41]

    Hashmi A, Hong J 2017 物理学报 66 238501Google Scholar

    Hashmi A, Hong J 2017 J. Phys. Chem. C 66 238501Google Scholar

    [42]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

  • [1] Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng. Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer. Acta Physica Sinica, 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [2] Su Xin, Huang Tian-Ye, Wang Jun-Zhuan, Liu Yuan, Zheng You-Liao, Shi Yi, Wang Xiao-Mu. Circular photogalvanic effect. Acta Physica Sinica, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [3] Li Chun-Lei, Xu Yan, Zheng Jun, Wang Xiao-Ming, Yuan Rui-Yang, Guo Yong. Light-field assisted spin-polarized transport properties in magnetic-electric barrier structures. Acta Physica Sinica, 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] Li Ye-Hua, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties of InSe nanoribbons terminated with non-metallic atoms and its strain modulation. Acta Physica Sinica, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [5] Hou Hai-Yan, Yao Hui, Li Zhi-Jian, Nie Yi-Hang. Valley and spin polarization manipulated by electric field in magnetic silicene superlattice. Acta Physica Sinica, 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] Zhang Hua-Lin, Sun Lin, Han Jia-Ning. Magneto-electronic properties of zigzag graphene nanoribbons doped with triangular boron nitride segment. Acta Physica Sinica, 2017, 66(24): 246101. doi: 10.7498/aps.66.246101
    [7] Liu Juan, Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons. Acta Physica Sinica, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [8] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [9] Zheng Yuan-Yuan, Ren Gui-Ming, Chen Rui, Wang Xing-Ming, Chen Xiao-Hong, Wang Ling, Yuan Li, Huang Xiao-Feng. Spin polarization and potential energy function of FeH2. Acta Physica Sinica, 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [10] Wang Ding, Zhang Zhen-Hua, Deng Xiao-Qing, Fan Zhi-Qiang. Electrical and magnetic properties of graphene nanoribbons with BN-chain doping. Acta Physica Sinica, 2013, 62(20): 207101. doi: 10.7498/aps.62.207101
    [11] Li Huan, Guo Wei. Effect of spin polarization on the ground state of Kondo system. Acta Physica Sinica, 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [12] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] Tang Zhen-Kun, Wang Ling-Ling, Tang Li-Ming, You Kai-Ming, Zou Bing-Suo. Spin polarized transport of two-dimensional electron gas through step-magnetic barrier structure. Acta Physica Sinica, 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [14] Teng Li-Hua, Yu Hua-Liang, Huang Zhi-Ling, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Effect of spin polarization on electron recombination dynamics in bulk intrinsic GaAs. Acta Physica Sinica, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [15] Yang Guang, P. V. Santos. Photoluminescence of GaAs(110) quantum wells modulated by surface acoustic waves. Acta Physica Sinica, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [16] Guo Li-Jun, Wüstenberg Jan-Peter, Oleksiy Andreyev, Bauer Michael, Aeschlimann Martin. Spin dynamics of GaAs(100) by two-photon photoemission. Acta Physica Sinica, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [17] Zhang Chang-Wen, Li Hua, Dong Jian-Min, Wang Yong-Juan, Pan Feng-Chun, Gu Yong-Quan, Li Wei. Studies on the electronic structures, exchange coupling and magnetic moments of spin and orbital in the compound SmCo55. Acta Physica Sinica, 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [18] Chen Li, Li Hua, Dong Jian-Min, Pan Feng-Chun, Mei Liang-Mo. Study on the spin-polarized electronicstructures and atomic magnetic moments ofcluster La8-xBaxCuO6. Acta Physica Sinica, 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] Qin Jian-Hua, Guo Yong, Chen Xin-Yi, Gu Bing-Lin. A study on spin-polarized transport properties in magnetic-electric barrier st ructures. Acta Physica Sinica, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] GUO YONG, GU BING-LIN, YOSHIYUKI KAWAZOE. TUNNELING TRANSPORT OF TWO-DIMENSIONAL SPIN-ELECTRONS THROUGH MAGNETIC QUANTUM S TRUCTURES. Acta Physica Sinica, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
Metrics
  • Abstract views:  14518
  • PDF Downloads:  424
  • Cited By: 0
Publishing process
  • Received Date:  18 July 2019
  • Accepted Date:  10 August 2019
  • Available Online:  01 October 2019
  • Published Online:  20 October 2019

/

返回文章
返回