Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Andreev reflection spectroscopy of ferromagnetic Fe0.26TaS2 with layered structure

Yu Xiao-Yang Feng Hong-Lei Gu Gang-Xu Liu Yong-He Li Zhi-Lin Xu Tong-Shuai Li Yong-Qing

Citation:

Andreev reflection spectroscopy of ferromagnetic Fe0.26TaS2 with layered structure

Yu Xiao-Yang, Feng Hong-Lei, Gu Gang-Xu, Liu Yong-He, Li Zhi-Lin, Xu Tong-Shuai, Li Yong-Qing
PDF
HTML
Get Citation
  • An elementary mission of spintronics research is to prevent the interface reacting in spin device and extract spin polarization of ferromagnetic material reliably. Layered transition metal sulfide has very strong anisotropic magnetism, magnetoresistance, and unique Hall effect. It provides a good platform for studying the magnetic order related physical phenomena and may lay a foundation for spintronic applications. In this work, the magnetism, electronic transport and Andreev reflection spectrum of a novel ferromagnetic material Fe0.26TaS2 with a layers-stacked structure are measured. Strong magnetic anisotropy, double-peak magnetoresistance and anomalous Hall effect are found. In the magnetic measurement, the strong magnetic anisotropy behavior in Fe0.26TaS2 single crystal is observed. Curie temperature TC of the Fe0.26TaS2 single crystal is confirmed by zero field cooling, field cooling and Arrot plot. The electronic transport in the Fe0.26TaS2 single crystal also reveals strong anisotropic behaviors, such as butterfly-like magnetoresistance and obvious anomalous hall effect below TC.To obtain the spin polarization of FexTaS2, we fabricate an FexTaS2/superconductor Andreev junction to measure the spin polarization that is fitted by the modified Blonder-Tinkham-Klapwijk (BTK) theory. Perhaps the diffusion of Pb can form an alloy structure, creating another superconductor behavior. The two-gap BTK theory confirms our hypothesis, and the result spin polarization can reach 26%. To avoid the interference from Pb alloy superconductor, we also fabricate an Fe0.26TaS2/Al/Pb superconductor junction by evaporating Al and then Pb film on the surface of Fe0.26TaS2 in sequence. The results of BTK fit show that the spin polarization from the first technical route cannot be reliable due to the tunneling layer on the Al interface. In order to obtain a clean interface, Fe0.26TaS2/NbSe2 junction is fabricated through mechanical-exfoliation and dry-transfer method. Through the Andreev reflection spectrum of this junction, the spin polarization of Fe0.26TaS2 is extracted to be 47% ± 7%. For various two-dimensional ferromagnetic materials, our work suggests that the dry-transfer method is well applicable in spin polarization extraction. The results of spin polarization indicate that the Fe0.26TaS2 is a promising candidate of next-generation material of spintronics.
      Corresponding author: Xu Tong-Shuai, xutongshuai@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos 61425015, 11704006), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the National Key Research and Development Program of China (Grant No. 2016YFA0300600)
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molna S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [3]

    刘兴翀, 路忠林, 任尚坤, 张凤鸣, 都有为, 刘存业, 匡安龙 2005 物理学报 54 2934

    Liu X C, Lu Z L, Ren S K, Zhang F M, Du Y W, Liu C Y, Kuang A L 2005 Acta Phys. Sin. 54 2934

    [4]

    Coey J M D, Chien C L 2003 MRS Bull. 28 720Google Scholar

    [5]

    Johnson P D 1997 Rep. Prog. Phys. 60 1217Google Scholar

    [6]

    Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar

    [7]

    Soulen Jr R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85Google Scholar

    [8]

    Jong M J M, Beenakker C W J 1995 Phys. Rev. Lett. 74 1657Google Scholar

    [9]

    Blonder G E, Tinkham M 1983 Phys. Rev. B 27 112

    [10]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

    [11]

    Mazin I I 1999 Phys. Rev. Lett. 83 1427Google Scholar

    [12]

    吴义华, 王振彦, 沈瑞 2009 物理学报 58 8591

    Wu Y H, Wang Z Y, Shen R 2009 Acta Phys. Sin. 58 8591

    [13]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510Google Scholar

    [14]

    Woods G T, Soulen Jr R J, Mazin I I, Nadgorny B, Osofsky M S, Sanders J, Srikanth H 2004 Phys. Rev. B 70 054416Google Scholar

    [15]

    Duif A M, Jansen A G M, Wyder P 1989 J. Phys. Condens. Mat. 1 3157Google Scholar

    [16]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [17]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

    [18]

    Parker J S, Watts S M, Ivanov P G, Xiong P 2002 Phys. Rev. Lett. 88 196601Google Scholar

    [19]

    Stokmaier M, Goll G, Weissenberger D, Sürgers C, von Löhneysen H 2008 Phys. Rev. Lett. 101 147005Google Scholar

    [20]

    Bugoslavsky Y, Miyoshi Y, Clowes S K, Branford W R, Lake M, Brown I, Caplin A D, Cohen L F 2005 Phys. Rev. B 71 104523Google Scholar

    [21]

    Zhang X H, Yu L Q, von Molnár S, Fisk Z, Xiong P 2009 Phys. Rev. Lett. 103 106602Google Scholar

    [22]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S, Xiong P 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [23]

    Morosan E, Zandbergen H W, Li L, Lee M, Checkelsky J G, Heinrich M, Siegrist T, Ong N P, Cava R J 2007 Phys. Rev. B 75 104401Google Scholar

    [24]

    Narita H, Ikuta H, Hinode H, Uchida T, Ohtani T, Wakihara M 1994 J. Solid State Chem. 108 148Google Scholar

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [27]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [28]

    Mankovsky S, Chadova K, Ködderitzsch D, Minár J, Ebert H, Bensch W 2015 Phys. Rev. B 92 144413Google Scholar

    [29]

    Ko K T, Kim K, Kim S B, Kim H D, Kim J Y, Min B I, Park J H, Chang F H, Lin H J, Tanaka A, Cheong S W 2011 Phys. Rev. Lett. 107 247201Google Scholar

    [30]

    Arai M, Moriya R, Yabuki N, Masubuchi S, Ueno K, Machida T 2015 Appl. Phys. Lett. 107 103107Google Scholar

    [31]

    Horibe Y, Yang J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [32]

    Checkelsky J G, Lee M, Morosan E, Cava R J, Ong N P 2008 Phys. Rev. B 77 014433Google Scholar

    [33]

    Chen C W, Chikara S, Zapf V S, Morosan E 2016 Phys. Rev. B 94 054406Google Scholar

    [34]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [35]

    Reefman D, Baak J, Brom H B, Wiegers G A 1990 Solid State Commun. 75 47Google Scholar

    [36]

    Zhang X, von Molnár S, Fisk Z, Xiong P 2008 Phys. Rev. Lett. 100 167001Google Scholar

    [37]

    Nowack A, Heinz A, Oster F, Wohlleben D, Güntherodt G, Fisk Z, Menovsky A 1987 Phys. Rev. B 36 2436(R)Google Scholar

    [38]

    Rodrigo J G, Guinea F, Vieira S, Aliev F G 1997 Phys. Rev. B 55 14318Google Scholar

  • 图 1  Fe0.26TaS2单晶样品的磁性测量结果 (a) 外加磁场垂直于ab面(Hab)时的FC和ZFC磁化曲线, 测量磁场为100 Oe (1 Oe = 103/(4π) A/m); (b)外加磁场平行于ab面时 (H//ab)的FC和ZFC磁化曲线, 测量磁场为100 Oe; (c) Hab的等温磁化曲线随外加磁场的变化; (d) H//ab的等温磁化曲线随外加磁场的变化(为清楚起见, 在垂直方向做了等间距平移)

    Figure 1.  Magnetization measurement results of Fe0.26TaS2: (a) Magnetization measurement with ZFC and FC process while Hab, the measurement field is 100 Oe; (b) magnetization measurement with ZFC and FC process while H//ab, the measurement field is 100 Oe; (c) isothermal magnetization measurements for Hab; (d) isothermal magnetization measurements for H//ab. For clarify, the data is shift equally in Fig. 1(d).

    图 2  Fe0.26TaS2等温磁化曲线和电阻-温度曲线(1 emu = 10–3 A·m2) (a) H⊥ab方向Fe0.26TaS2等温磁化曲线的Arrott图, 居里温度为115 K; (b) Fe0.26TaS2的电阻-温度曲线

    Figure 2.  Isothermal magnetization and temperature dependence of resistance of Fe0.26TaS2: (a) Arrot plot for isothermal magnetization in H⊥ab; (b) temperature dependence of resistance.

    图 3  磁电阻和霍尔电阻随外加磁场的变化 (a) Hab时, 磁电阻随外加磁场的变化; (b) H//ab时, 磁电阻随外加磁场的变化; (c) Hab时, 霍尔电阻随外加磁场的变化; (d) H//ab时, 霍尔电阻随外加磁场的变化

    Figure 3.  Magnetic field dependence of magnetoresistance and Hall effect: (a) Magnetic field dependence of magnetoresistance, Hab; (b) magnetic field dependence of magnetoresistance, H//ab; (c) magnetic field dependence of Hall effect, Hab; (d) magnetic field dependence of Hall effect, H//ab.

    图 4  Fe0.26TaS2/Pb的Andreev反射谱 (a)不同温度下Andreev结的归一化微分电导谱; (b) T = 1.6 K, 修正的BTK理论对微分电导谱的拟合结果; (c) T = 2 K, 修正的BTK理论对微分电导谱的拟合结果; (d) T = 4 K, 修正的BTK理论对微分电导谱的拟合结果. 黑色点为实验数据, 红色线为理论计算结果

    Figure 4.  Andreev reflection spectroscopy of Fe0.26TaS2/Pb: (a) Normalization of Andreev reflection spectroscopy from T = 2 K to 8 K; (b) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 1.6 K; (c) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 2 K; (d) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 4 K. The black dot is experimental data and red line is fitting.

    图 5  Fe0.26TaS2/Al/Pb异质结的Andreev反射谱 (a)不同温度下的归一化微分电导谱; (b) T = 0.36 K, 修正的BTK理论对微分电导谱的拟合结果; (c) T = 1 K, 修正的BTK理论对微分电导谱的拟合结果; (d) T = 6 K, 修正的BTK理论对微分电导谱的拟合结果; 黑色点为实验数据, 红色线为理论计算结果, 自旋极化率P ≠ 0

    Figure 5.  Andreev reflection spectroscopy of Fe0.26TaS2/Al/Pb: (a) Normalization of Andreev reflection reflection spectroscopy from T = 0.36 K to 9 K; (b) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 0.36 K; (c) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 1 K; (d) modified BTK fitting for normalized Andreev reflection spectroscopy, T = 6 K. The black dot is experimental data and red line is fitting. Spin polarization is fixed to none-zero (P ≠ 0).

    图 6  修正的BTK理论对不同温度下微分电导谱的拟合结果 (a) T = 0.36 K; (b) T = 1 K; (c) T = 3 K; (d) T = 6 K; 黑色点为实验数据, 红色线为理论计算结果; 自旋极化率固定为零(P = 0)

    Figure 6.  Modified BTK fitting for normalized Andreev reflection spectroscopy of Fe0.26TaS2/Al/Pb: (a) T = 0.36 K; (b) T = 1 K; (c) T = 3 K; (d) T = 6 K. The black dot is experimental data and the red line is fitting. Spin polarization is fixed to zero (P = 0).

    图 7  Fe0.26TaS2/NbSe2的Andreev反射谱 (a)不同温度下的归一化微分电导谱和修正的BTK拟合; (b) T = 4 K的微分电导谱和修正的BTK拟合; (c) T = 1.7 K下, 负偏压的归一化微分电导谱及修正的BTK拟合; (d) T = 1.7 K下, 正偏压的归一化微分电导谱及修正的BTK拟合; 黑色点为实验数据, 红色线为理论计算结果

    Figure 7.  Andreev reflection spectroscopy of Fe0.26TaS2//NbSe2: (a) Normalization of Andreev reflection spectroscopy from T = 1.7 K to 8 K; (b) modified BTK fitting for normalized Andreev reflection spectroscopy at T = 4 K; (c) modified BTK fitting for normalized Andreev reflection spectroscopy at T = 1.7 K; (d) modified BTK fitting respectively for negative bias or positive bias Andreev reflection spectroscopy at T = 1.7 K. The black dot is experimental data and red line is fitting.

  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molna S V, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Fert A 2008 Rev. Mod. Phys. 80 1517Google Scholar

    [3]

    刘兴翀, 路忠林, 任尚坤, 张凤鸣, 都有为, 刘存业, 匡安龙 2005 物理学报 54 2934

    Liu X C, Lu Z L, Ren S K, Zhang F M, Du Y W, Liu C Y, Kuang A L 2005 Acta Phys. Sin. 54 2934

    [4]

    Coey J M D, Chien C L 2003 MRS Bull. 28 720Google Scholar

    [5]

    Johnson P D 1997 Rep. Prog. Phys. 60 1217Google Scholar

    [6]

    Meservey R, Tedrow P M 1994 Phys. Rep. 238 173Google Scholar

    [7]

    Soulen Jr R J, Byers J M, Osofsky M S, Nadgorny B, Ambrose T, Cheng S F, Broussard P R, Tanaka C T, Nowak J, Moodera J S, Barry A, Coey J M D 1998 Science 282 85Google Scholar

    [8]

    Jong M J M, Beenakker C W J 1995 Phys. Rev. Lett. 74 1657Google Scholar

    [9]

    Blonder G E, Tinkham M 1983 Phys. Rev. B 27 112

    [10]

    Blonder G E, Tinkham M, Klapwijk T M 1982 Phys. Rev. B 25 4515Google Scholar

    [11]

    Mazin I I 1999 Phys. Rev. Lett. 83 1427Google Scholar

    [12]

    吴义华, 王振彦, 沈瑞 2009 物理学报 58 8591

    Wu Y H, Wang Z Y, Shen R 2009 Acta Phys. Sin. 58 8591

    [13]

    Strijkers G J, Ji Y, Yang F Y, Chien C L, Byers J M 2001 Phys. Rev. B 63 104510Google Scholar

    [14]

    Woods G T, Soulen Jr R J, Mazin I I, Nadgorny B, Osofsky M S, Sanders J, Srikanth H 2004 Phys. Rev. B 70 054416Google Scholar

    [15]

    Duif A M, Jansen A G M, Wyder P 1989 J. Phys. Condens. Mat. 1 3157Google Scholar

    [16]

    Ji Y, Strijkers G J, Yang F Y, Chien C L, Byers J M, Anguelouch A, Xiao G, Gupta A 2001 Phys. Rev. Lett. 86 5585Google Scholar

    [17]

    Ren C, Trbovic J, Kallaher R L, Braden J G, Parker J S, von Molnár S, Xiong P 2007 Phys. Rev. B 75 205208Google Scholar

    [18]

    Parker J S, Watts S M, Ivanov P G, Xiong P 2002 Phys. Rev. Lett. 88 196601Google Scholar

    [19]

    Stokmaier M, Goll G, Weissenberger D, Sürgers C, von Löhneysen H 2008 Phys. Rev. Lett. 101 147005Google Scholar

    [20]

    Bugoslavsky Y, Miyoshi Y, Clowes S K, Branford W R, Lake M, Brown I, Caplin A D, Cohen L F 2005 Phys. Rev. B 71 104523Google Scholar

    [21]

    Zhang X H, Yu L Q, von Molnár S, Fisk Z, Xiong P 2009 Phys. Rev. Lett. 103 106602Google Scholar

    [22]

    Guan T, Lin C, Yang C, Shi Y, Ren C, Li Y, Weng H, Dai X, Fang Z, Yan S, Xiong P 2015 Phys. Rev. Lett. 115 087002Google Scholar

    [23]

    Morosan E, Zandbergen H W, Li L, Lee M, Checkelsky J G, Heinrich M, Siegrist T, Ong N P, Cava R J 2007 Phys. Rev. B 75 104401Google Scholar

    [24]

    Narita H, Ikuta H, Hinode H, Uchida T, Ohtani T, Wakihara M 1994 J. Solid State Chem. 108 148Google Scholar

    [25]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [26]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [27]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [28]

    Mankovsky S, Chadova K, Ködderitzsch D, Minár J, Ebert H, Bensch W 2015 Phys. Rev. B 92 144413Google Scholar

    [29]

    Ko K T, Kim K, Kim S B, Kim H D, Kim J Y, Min B I, Park J H, Chang F H, Lin H J, Tanaka A, Cheong S W 2011 Phys. Rev. Lett. 107 247201Google Scholar

    [30]

    Arai M, Moriya R, Yabuki N, Masubuchi S, Ueno K, Machida T 2015 Appl. Phys. Lett. 107 103107Google Scholar

    [31]

    Horibe Y, Yang J, Cho Y H, Luo X, Kim S B, Oh Y S, Huang F T, Asada T, Tanimura M, Jeong D, Cheong S W 2014 J. Am. Chem. Soc. 136 8368Google Scholar

    [32]

    Checkelsky J G, Lee M, Morosan E, Cava R J, Ong N P 2008 Phys. Rev. B 77 014433Google Scholar

    [33]

    Chen C W, Chikara S, Zapf V S, Morosan E 2016 Phys. Rev. B 94 054406Google Scholar

    [34]

    Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D, Morosan E 2015 Phys. Rev. B 91 054426Google Scholar

    [35]

    Reefman D, Baak J, Brom H B, Wiegers G A 1990 Solid State Commun. 75 47Google Scholar

    [36]

    Zhang X, von Molnár S, Fisk Z, Xiong P 2008 Phys. Rev. Lett. 100 167001Google Scholar

    [37]

    Nowack A, Heinz A, Oster F, Wohlleben D, Güntherodt G, Fisk Z, Menovsky A 1987 Phys. Rev. B 36 2436(R)Google Scholar

    [38]

    Rodrigo J G, Guinea F, Vieira S, Aliev F G 1997 Phys. Rev. B 55 14318Google Scholar

  • [1] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [2] Wang Zong,  Hou Xing-Yuan,  Pan Bo-Jin,  Gu Ya-Dong,  Zhang Meng-Di,  Zhang Fan,  Chen Gen-Fu,  Ren Zhi-An,  Shan Lei. Point-contact Andreev reflection spectroscopy on Re3W superconductor. Acta Physica Sinica, 2019, 68(1): 017402. doi: 10.7498/aps.68.20181996
    [3] Yang Zhi, Zhang Yue, Zhou Qian-Qian, Wang Yu-Hua. Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation. Acta Physica Sinica, 2017, 66(13): 137501. doi: 10.7498/aps.66.137501
    [4] Liu Hong-Yan, Liu Zhu-Hong, Li Ge-Tian, Ma Xing-Qiao. Influences of Ga content on the structure and magnetic properties of Mn2 -xNiGa1+x alloys. Acta Physica Sinica, 2016, 65(4): 048102. doi: 10.7498/aps.65.048102
    [5] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [6] Jiang Li-Na, Zhang Yu-Bin, Dong Shun-Le. Effect of bipolarons on spin polarized transport in magnetic permeated sublayer of organic spin device. Acta Physica Sinica, 2015, 64(14): 147104. doi: 10.7498/aps.64.147104
    [7] Yang Yu-Qi, Gao Qing-Qing, Li Guan-Nan. Structure transformation and magnetisms in Ho2Ni7-xFex compounds. Acta Physica Sinica, 2013, 62(1): 016103. doi: 10.7498/aps.62.016103
    [8] Wang Rui-Qin, Gong Jian, Wu Jian-Ying, Chen Jun. Time of spin-polarized tunneling through a symmetric double-barrier quantum well structure. Acta Physica Sinica, 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [9] Du Yin, Wang Wen-Hong, Zhang Xiao-Ming, Liu En-Ke, Wu Guang-Heng. Structural, magnetic, transport, and half-metallic properties of Fe2Co1-xCrxSi Heusler alloys. Acta Physica Sinica, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [10] Luo Li-Jin, Zhong Chong-Gui, Fang Jing-Huai, Zhao Yong-Lin, Zhou Peng-Xia, Jiang Xue-Fan. Responses of electronic structure and magnetism to tetragonal distortion and their influence on pressure for the Heusler alloy Mn2 NiAl. Acta Physica Sinica, 2011, 60(12): 127502. doi: 10.7498/aps.60.127502
    [11] Zhao Kun, Zhang Kun, Wang Jia-Jia, Yu Jin, Wu San-Xie. A first principles study on tetragonal distortion, magnetic property and elastic constants of Pd2 CrAl Heusler alloy. Acta Physica Sinica, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [12] Gao Tan-Hua, Lu Dao-Ming, Wu Shun-Qing, Zhu Zi-Zhong. First-principles calculations of magnetism of Fe atomic sheet. Acta Physica Sinica, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [13] He Zhi-Gang, Cheng Xing-Hua, Gong Min, Cai Juan-Lu, Shi Rui-Ying. The factors influencing spin-polarized transport in magnetic pn junction. Acta Physica Sinica, 2010, 59(9): 6521-6526. doi: 10.7498/aps.59.6521
    [14] Han Li-An, Chen Chang-Le, Dong Hui-Ying, Wang Jian-Yuan, Gao Guo-Mian, Luo Bing-Cheng. Magnetic and electrical properties of layered perovskite La1.3Sr1.7Mn1-xCuxO7. Acta Physica Sinica, 2008, 57(1): 541-544. doi: 10.7498/aps.57.541
    [15] Han Wei, Chang Shu-Quan, Dai Yao-Dong, Chen Da, Huang Yan-Jun. Magnetism and Mssbauer spectra of cyanide-bridged Ni-Fe nano-molecular-magnets. Acta Physica Sinica, 2008, 57(4): 2493-2499. doi: 10.7498/aps.57.2493
    [16] Liu Jin-Hong, Zhang Ling-Fei, Tian Geng-Fang, Li Ji-Chen, Li Fa-Shen. Structure and magnetic properties of NiFe2O4 nanoparticles prepared by low-temperature solid-state reaction. Acta Physica Sinica, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [17] Pang Li-Jia, Sun Guang-Fei, Chen Ju-Fang, Qiang Wen-Jiang, Zhang Jin-Biao, Li Wen-An. Study of magnetic properties of Pr2Fe14B/α-Fe nanocomposite magnets. Acta Physica Sinica, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [18] Zhang Wei, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heusler alloy Co2TiSn. Acta Physica Sinica, 2005, 54(10): 4879-4883. doi: 10.7498/aps.54.4879
    [19] Wang Ben-Yang, Qian Zheng-Nan, Sui Yu, Liu Yu-Qiang, Su Wen-Hui, Zhang Ming, Liu Zhu-Hong, Liu Guo-Dong, Wu Guang-Heng. Magnetism and transport properties of Heuser alloy Cu2VAl. Acta Physica Sinica, 2005, 54(7): 3386-3390. doi: 10.7498/aps.54.3386
    [20] Guo Hong-Yong, Liu Bao-Dan, Tang Ning, Luo Hong-Zhi, Li Yang-Xian, Yang Fu-Ming, Wu Guang-Heng. The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd3(Fe,Co,M)29(M=Ti,V,Cr) compounds. Acta Physica Sinica, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
Metrics
  • Abstract views:  10215
  • PDF Downloads:  231
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2019
  • Accepted Date:  06 October 2019
  • Available Online:  27 November 2019
  • Published Online:  01 December 2019

/

返回文章
返回