Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission

Fei Hong-Ming Yan Shuai Xu Yu-Cheng Lin Han Wu Min Yang Yi-Biao Chen Zhi-Hui Tian Yuan Zhang Ya-Min

Citation:

Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission

Fei Hong-Ming, Yan Shuai, Xu Yu-Cheng, Lin Han, Wu Min, Yang Yi-Biao, Chen Zhi-Hui, Tian Yuan, Zhang Ya-Min
PDF
HTML
Get Citation
  • Recently, quantum computing and information processing based on photons has become one research frontier, attracting significant attentions. The optical asymmetric transmission devices (OATD), having similar function to the diode in electric circuitry, will find important applications. In particular, the OATDs based on nanophotonic structures are preferred due to their potential applications in the on-chip integration with other photonic devices. Therefore, there have been numerous applications of OATDs based on different nanostructures, including composite grating structures, metasurfaces, surface plasmon polaritons, metamaterials, photonic crystals (PhCs). However, in general, those designs show relatively low forward transmittance (< 0.5) and narrow working bandwidth (< 100 nm), and they are able to work with only one polarization state. This makes the current OATDs unsuitable for many applications. To solve this challenge, here we design a two-dimensional (2D) PhC heterostructure based on the self-collimating effect and bandgap properties. The PhC heterostructure is composed of two square lattice 2D PhCs (PhC 1 and PhC 2) on a silicon substrate with different lattice shapes and lattice constants. The PhC 1 is composed of periodically arranged silicon cylinders in air. Meanwhile, the PhC 2 is an square air hole array embedding in silicon. The two PhCs are integrated with an inclined interface with an angle of 45° with respect to the direction of incident light. The plane wave expansion method is used to calculate the band diagrams and equal frequency contours (EFCs) of the two PhCs. As the propagation directions of light waves in PhCs are determined by the gradient direction of the EFCs, we are able to control the light propagation by controlling the EFCs of PhCs. By engineering the EFCs, the PhC 2 shows strong self-collimation effect in a broad wavelength range with a central wavelength of 1550 nm for both TE and TM polarization. By self-collimating the forward incident light from different incident angles to couple to the output waveguide, we are able to significantly increase the forward transmittance to > 0.5 for both TE and TM polarized light. Meanwhile, the backward transmittance can be effectively cut off by the unique dispersion properties of the PhC heterostructures. In this way, the heterostructure is able to achieve polarization independent asymmetric transmission of light waves in a broad wavelength range. To visualize the light propagation in the PhC heterostructure, we use the finite-difference-time-domain method to calculate the electric intensity distributions of the forward and backward propagation light of both TE and TM polarization at a wavelength of 1550 nm. Strong self-collimation effect of forward propagation light and the nearly complete blockage of backward propagation light can be identified unambiguously in the intensity plots, confirming the theoretical analysis. The calculation of transmittance and contrast ratio spectra show that the asymmetric transmission wavelength bandwidth can reach 532 nm with the forward transmittance and contrast ratio being 0.693 and 0.946 at an optical communication wavelength of 1550 nm for TE polarized light. On the other hand, for the TM polarized light, the asymmetric transmission wavelength bandwidth is 128 nm, the forward transmittance and contrast ratio are 0.513 and 0.972, respectively, at 1550 nm wavelength. Thus, it is confirmed that the PhC heterostructure achieves highly efficient, broadband and polarization independent asymmetric transmission. Finally, to further improve the forward transmittance of the TE polarized light, we modulate the radius of the front row of photonic lattice of PhC 1 at the interface. It shows that the forward transmittance can be further improved to a record high value of 0.832 with a bandwidth of 562 nm for TE polarized light. Our design opens up new possibilities for designing OATDs based on PhCs, and will find broad applications, for the design can be realized by current nanofabrication techniques.
      Corresponding author: Fei Hong-Ming, feihongming@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904255, 51702226)
    [1]

    Espinola R L, Izuhara T, Tsai M C, Osgoode R M 2004 Opt. Lett. 29 941Google Scholar

    [2]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [3]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447Google Scholar

    [4]

    Kuzmiak V, Maradudin A A 2015 Phys. Rev. A 92 013615Google Scholar

    [5]

    Stolarek M, Yavorskiy D, Kotyński R, Zapata R, Carlos J, Łusakowski J, Szoplik T 2013 Opt. Lett. 38 839Google Scholar

    [6]

    Xiao Z Y, Zou H L, Xu K K, Tang J Y 2018 J. Magn. Magn. Mater. 449 278Google Scholar

    [7]

    Ozer A, Kocer H, Kurt H 2018 J. Opt. Soc. Am. B 35 2111Google Scholar

    [8]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [9]

    Ling Y H, Lirong H, Wei H, Tongjun L, Yali S, Jing L, Gang Y 2017 Opt. Express 25 13648Google Scholar

    [10]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M, Li J B, Tan S H, Liu J Q, Hu W D, Chen X S 2018 Opt. Commun. 412 1Google Scholar

    [11]

    Li X F, Rui F, Ding W 2018 J. Phys. D: Appl. Phys. 51 145304Google Scholar

    [12]

    Bai Y, Chen Y, Zhang Y, Wang Y, Aba T, Li H, Wang L, Zhang Z 2018 J. Phys. Condens. Matter 30 114001Google Scholar

    [13]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [14]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [15]

    Soltani A, Ouerghi F, AbdelMalek F, Haxha S, Ademgil H, Akowuah E K 2017 Opt. Commun. 392 147Google Scholar

    [16]

    Wu Z, Chen J, Ji M, Huang Q, Xia J, Wu Y, Wang Y 2015 Appl. Phys. Lett. 107 221102Google Scholar

    [17]

    Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J 2014 Opt. Lett. 39 1370Google Scholar

    [18]

    Zhang Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [19]

    Serebryannikov A E, Alici K B, Magath T, Cakmak A O, Ozbay E 2012 Phys. Rev. A 86 053835Google Scholar

    [20]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [21]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209Google Scholar

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209Google Scholar

    [22]

    费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar

    Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar

    [23]

    Fei H M, Wu M, Xu T, Lin H, Yang Y B, Liu X, Zhang M D, Cao B Z 2018 J. Opt. 20 095004Google Scholar

    [24]

    Bourzac K 2012 Nature 483 388Google Scholar

  • 图 1  硅基光子晶体异质结构示意图

    Figure 1.  Schematic of photonic crystal heterostructure based on silicon.

    图 2  (a) PhC 1能带图; (b) PhC 2能带图, 插图为PhC 2在ΓX方向的能带; (c) PhC 1在TE偏振模式第一条能带EFC; (d) PhC 2在TE偏振光下第四条能带EFC (蓝线表示TE偏振光1550 nm处的频带); (e) PhC 1在TM偏振光第一条能带EFC; (f) PhC 2在TM偏振光第三条能带EFC (红线表示TM模式1550 nm处的频带)

    Figure 2.  (a) Photonic band diagrams of PhC 1; (b) the photonic band diagrams of PhC 2, where the insert shows the energy band of PhC 2 in ΓX direction; (c) the first band EFC of PhC 1 under TE polarized light; (d) the fourth band EFC of PhC 2 under TE polarized light (blue lines represent TE mode at the wavelength of 1550 nm); (e) the first band EFC of PhC 1 under TM polarized light; (f) the third band EFC of PhC 2 under TM polarized light (red lines represent TM mode at 1550 nm).

    图 3  1550 nm波长处正向入射场强图和反向入射场强图 (a) TE偏振光正向; (b) TE偏振光反向; (c) TM偏振光正向; (d) TM偏振光反向

    Figure 3.  Electric field intensity distribution of forward transmission and backward transmission at the wavelength of 1550 nm: (a) Forward transmission of TE polarized light; (b) backward transmission of TE polarized light; (c) forward transmission of TM polarized light; (d) backward transmission of TM polarized light.

    图 4  异质结构透射谱 (a) TE偏振光; (b) TM偏振光; 其中灰色区域表示结构工作带宽

    Figure 4.  Transmittance spectra of heterostructure: (a) TE polarized light, (b) TM polarized light. The grey region represents the asymmetric transmission working wavelength range, where forward transmission is higher than 0.5.

    图 5  光子晶体异质结优化示意图, 其中被优化的光子晶体结构通过红色长方形标注

    Figure 5.  Schematic of optimization of photonic crystal heterostructure, where the row of photonic lattice is highlighted by the red square is optimized.

    图 6  异质结构界面处PhC 1不同半径硅圆柱TE偏振光透射谱 (a) R = 55 nm; (b) R = 65 nm; (c) R = 70 nm; (d) R = 75 nm

    Figure 6.  Transmittance spectra of the TE polarized light with different radii of PhC 1 photonic lattice at heterostructure interface: (a) R = 55 nm; (b) R = 65 nm; (c) R = 70 nm; (d) R = 75 nm.

    表 1  异质界面处PhC 1硅圆柱不同半径的非对称传输性能

    Table 1.  Asymmetric transmission performance with different radii of PhC 1 at heterostructure interface.

    R/nm1550 nm正向
    透射率
    透射对比度非对称传输
    带宽/nm
    550.5790.941448
    600.6930.946532
    650.7890.947556
    700.8320.944562
    750.8030.942568
    DownLoad: CSV
  • [1]

    Espinola R L, Izuhara T, Tsai M C, Osgoode R M 2004 Opt. Lett. 29 941Google Scholar

    [2]

    Zhou X, Wang Y, Leykam D, Chong Y D 2017 New J. Phys. 19 095002Google Scholar

    [3]

    Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M 2012 Science 335 447Google Scholar

    [4]

    Kuzmiak V, Maradudin A A 2015 Phys. Rev. A 92 013615Google Scholar

    [5]

    Stolarek M, Yavorskiy D, Kotyński R, Zapata R, Carlos J, Łusakowski J, Szoplik T 2013 Opt. Lett. 38 839Google Scholar

    [6]

    Xiao Z Y, Zou H L, Xu K K, Tang J Y 2018 J. Magn. Magn. Mater. 449 278Google Scholar

    [7]

    Ozer A, Kocer H, Kurt H 2018 J. Opt. Soc. Am. B 35 2111Google Scholar

    [8]

    Zhang L, Mei S, Huang K, Qiu C W 2016 Adv. Opt. Mater. 4 818Google Scholar

    [9]

    Ling Y H, Lirong H, Wei H, Tongjun L, Yali S, Jing L, Gang Y 2017 Opt. Express 25 13648Google Scholar

    [10]

    Peng Y X, Wang K J, He M D, Luo J H, Zhang X M, Li J B, Tan S H, Liu J Q, Hu W D, Chen X S 2018 Opt. Commun. 412 1Google Scholar

    [11]

    Li X F, Rui F, Ding W 2018 J. Phys. D: Appl. Phys. 51 145304Google Scholar

    [12]

    Bai Y, Chen Y, Zhang Y, Wang Y, Aba T, Li H, Wang L, Zhang Z 2018 J. Phys. Condens. Matter 30 114001Google Scholar

    [13]

    Stephen L, Yogesh N, Subramanian V 2018 J. Appl. Phys. 123 033103Google Scholar

    [14]

    Xu T, Lezec H J 2014 Nat. Commun. 5 4141Google Scholar

    [15]

    Soltani A, Ouerghi F, AbdelMalek F, Haxha S, Ademgil H, Akowuah E K 2017 Opt. Commun. 392 147Google Scholar

    [16]

    Wu Z, Chen J, Ji M, Huang Q, Xia J, Wu Y, Wang Y 2015 Appl. Phys. Lett. 107 221102Google Scholar

    [17]

    Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J 2014 Opt. Lett. 39 1370Google Scholar

    [18]

    Zhang Y, Kan Q, Wang G P 2014 Opt. Lett. 39 4934Google Scholar

    [19]

    Serebryannikov A E, Alici K B, Magath T, Cakmak A O, Ozbay E 2012 Phys. Rev. A 86 053835Google Scholar

    [20]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [21]

    刘丹, 胡森, 肖明 2017 物理学报 66 054209Google Scholar

    Liu D, Hu S, Xiao M 2017 Acta Phys. Sin. 66 054209Google Scholar

    [22]

    费宏明, 徐婷, 刘欣, 林瀚, 陈智辉, 杨毅彪, 张明达, 曹斌照, 梁九卿 2017 物理学报 66 204103Google Scholar

    Fei H M, Xu T, Liu X, Lin H, Chen Z H, Yang Y B, Zhang M D, Cao B Z, Liang J Q 2017 Acta Phys. Sin. 66 204103Google Scholar

    [23]

    Fei H M, Wu M, Xu T, Lin H, Yang Y B, Liu X, Zhang M D, Cao B Z 2018 J. Opt. 20 095004Google Scholar

    [24]

    Bourzac K 2012 Nature 483 388Google Scholar

  • [1] Lü Yu-Xi, Wang Chen, Duan Tian-Qi, Zhao Tong, Chang Peng-Fa, Wang An-Bang. Asymmetric transmission of cascaded acousto-optic device and whispering gallery mode microcavity. Acta Physica Sinica, 2024, 73(1): 014101. doi: 10.7498/aps.73.20230653
    [2] Wu Min, Fei Hong-Ming, Lin Han, Zhao Xiao-Dan, Yang Yi-Biao, Chen Zhi-Hui. Design of asymmetric transmission of photonic crystal heterostructure based on two-dimensional hexagonal boron nitride material. Acta Physica Sinica, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [3] Qiu Ke-Peng, Luo Yue, Zhang Wei-Hong. Analysis and design of new chiral metamaterials with asymmetric transmission characteristics. Acta Physica Sinica, 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [4] Liu Yan-Ling, Liu Wen-Jing, Bao Jia-Mei, Cao Yong-Jun. Band-gap structures of two-dimensional magnonic crystals with complex lattices. Acta Physica Sinica, 2016, 65(15): 157501. doi: 10.7498/aps.65.157501
    [5] Zou Jun-Hui, Zhang Juan. Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures. Acta Physica Sinica, 2016, 65(1): 014214. doi: 10.7498/aps.65.014214
    [6] Song Zong-Gen, Deng Ke, He Zhao-Jian, Zhao He-Ping. Bending and splitting of self-collimated beams in high symmetry sonic crystal. Acta Physica Sinica, 2016, 65(9): 094301. doi: 10.7498/aps.65.094301
    [7] Hu Xiao-Ying, Guo Xiao-Xia, Hu Wen-Tao, Huhe Mandula, Zheng Xiao-Xia, Jing Li-Li. Spin-wave band gaps created by rotating square rods in triangular lattice magnonic crystals. Acta Physica Sinica, 2015, 64(10): 107501. doi: 10.7498/aps.64.107501
    [8] Hu Xiao-Ying, Huhemandula, Cao Yong-Jun. Band-structure optimization of triangular lattice magnonic crystals. Acta Physica Sinica, 2014, 63(14): 147501. doi: 10.7498/aps.63.147501
    [9] Han Kui, Wang Juan-Juan, Zhou Fei, Shen Xiao-Peng, Shen Yi-Feng, Wu Yu-Xi, Tang Gang. Goos-Hänchen shift of self-collimated beam in Kretschmann configuration based on photonic crystal. Acta Physica Sinica, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [10] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [11] Cao Yong-Jun, Yun Guo-Hong, Narsu. Band-structure calculations of two-dimesional magnonic crystals with plane-wave expansion method*. Acta Physica Sinica, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [12] Wang Li-Yong, Cao Yong-Jun. Effects of arrangement of scatterers on band gaps of two-dimesional magnonic crystals. Acta Physica Sinica, 2011, 60(9): 097501. doi: 10.7498/aps.60.097501
    [13] Han Kui, Wang Zi-Yu, Shen Xiao-Peng, Wu Qiong-Hua, Tong Xing, Tang Gang, Wu Yu-Xi. Mach-Zehnder interferometer designed based on self-collimating beams and photonic band gap in photonic crystals. Acta Physica Sinica, 2011, 60(4): 044212. doi: 10.7498/aps.60.044212
    [14] Zhong Qi, Han Kui, Shen Xiao-Peng, Tong Xing, Wu Qiong-Hua, Li Ming-Xue, Wu Yu-Xi. Polarization-independent self-collimation bends and beam splitters in 32,4,3,4 Archimedean photonic crystals. Acta Physica Sinica, 2010, 59(10): 7060-7065. doi: 10.7498/aps.59.7060
    [15] Mu Zhong-Fei, Wu Fu-Gen, Zhang Xin, Zhong Hui-Lin. Effect of translation group symmetry on phononic band gaps studied by supercell calculation. Acta Physica Sinica, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [16] Zhang Jin-Long, Liu Xu, Li Yi-Yu, Li Ming-Yu, Gu Pei-Fu. Analysis of self-collimation and subwavelength imaging in one-dimensional metal-dielectric structure. Acta Physica Sinica, 2007, 56(10): 6075-6079. doi: 10.7498/aps.56.6075
    [17] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Zhang Jin-Long, Liu Xu. Self-collimation and subwavelength lensing in wavy two-dimensional photonic crystals. Acta Physica Sinica, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [18] Zhao Fang, Yuan Li-Bo. Characteristics of the band structure in two-dimensional phononic crystals with complex lattices. Acta Physica Sinica, 2005, 54(10): 4511-4516. doi: 10.7498/aps.54.4511
    [19] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
    [20] Zhuang Fei, Wu Liang, He Sai-Ling. . Acta Physica Sinica, 2002, 51(12): 2865-2870. doi: 10.7498/aps.51.2865
Metrics
  • Abstract views:  7312
  • PDF Downloads:  155
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2020
  • Accepted Date:  28 April 2020
  • Available Online:  07 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回