Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Internal friction of Ni-Al intermetallic compound formation in sintering process

Li Yu-Chuan Hao Gang-Ling Wang Jin Wang Wei-Guo Wang Xin-Fu Wang Dan

Citation:

Internal friction of Ni-Al intermetallic compound formation in sintering process

Li Yu-Chuan, Hao Gang-Ling, Wang Jin, Wang Wei-Guo, Wang Xin-Fu, Wang Dan
PDF
HTML
Get Citation
  • The Ni-Al intermetallic compounds, as important high-temperature structural materials, have clear target requirements in a number of fields. Powder metallurgy is an important candidate for preparing the Ni-Al intermetallic compounds. Clarifying the formation and transformation process of Ni-Al intermetallic compounds in sintering process and determining the solid diffusion reaction temperature and types of intermetallic compounds are greatly important for tailoring sintering process and optimizing product quality. In this paper, the internal friction behaviors of Ni-Al powder mixture compacts in the sintering process are systematically investigated by the internal friction technique. A typical internal friction peak is observed in the internal friction-temperature spectrum. The peak height decreases with the measuring frequency increasing, but the peak temperature is independent of frequency. Moreover, the internal friction peak shifts toward higher temperature and the peak height increases as the heating rate increases. It is reasonable that the internal friction peak belongs to the typical phase transformation internal friction peak which is associated with the formation of intermetallic compounds NiAl3 and Ni2Al3 in the heating process. Furthermore, the microstructure of the Ni-Al powder mixture can be tailored by mechanical ball-milling. The internal friction peak shifts toward lower temperature and the peak height decreases with the ball-milling time increasing, which indicates that the solid diffusion reaction can be activated at lower temperature with a slower reaction rate. This decrease is related to the refinement of powder particles, the lamellar formation of powder mixture, the enhancement of solid solution degree and surface energy, and the shortened atomic diffusion distance due to the mechanical ball-milling. It is also indicated that the mechanical ball-milling can effectively reduce the initial temperature of solid diffusion reaction, thus lowering sintering temperature.
      Corresponding author: Hao Gang-Ling, glhao@issp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52061038, 51661032, 51301150), the Special Program of Youth New-star of Science and Technology of Shaanxi Province, China (Grant No. 2013KJXX-11), and the Key Industrial Research Program of Yan’an Science and Technology Department, China (Grant No. 2016KG-02)
    [1]

    Camagu S T, Mathabathe N M, Motaung D E, Muller T F G, Arendse C J, Bolokang A S 2019 Vacuum 169 108919Google Scholar

    [2]

    Moshksar M M, Mirzaee M 2004 Intermetallics 12 1361Google Scholar

    [3]

    Mashreghi A, Moshksar M M 2009 J. Alloys Compd. 484 957Google Scholar

    [4]

    Chen T, Hampikia J M, Thadhani N N 1999 Acta Mater. 47 2567Google Scholar

    [5]

    Enayati M H, Karimzadeh F, Anvari S Z 2008 J. Mater. Process. Technol. 200 312Google Scholar

    [6]

    Mirale D B 1993 Acta Mater. 41 649Google Scholar

    [7]

    Chmielewski M, Nosewicz S, Pietrzak K, Rojek J, Strojny-Nedza A, Mackiewicz S, Dutkiewicz J 2014 J. Mater. Eng. Perform. 23 3875Google Scholar

    [8]

    Nuria C, Carlos R C L, Jose M G 2013 J. Mater. Res. Technol. 2 75Google Scholar

    [9]

    Movahedi B 2014 Adv. Powde. Technol. 25 871Google Scholar

    [10]

    Xiang Z D, Rose S R, Datta P K 2008 Scr. Mater. 59 99Google Scholar

    [11]

    Guo J T, Wang Z S, Sheng L Y, Zhou L Z, Yuan C, Chen Z G, Li Song 2012 Prog. Nat. Sci. 22 414Google Scholar

    [12]

    Hadjiafxenti A, Gunduz I E, Tsotsos C, Kyratsi T, Aouadi S M, Doumanidis C C, Rebholz C 2010 J. Alloys Compd. 505 467Google Scholar

    [13]

    Hadjiafxenti A, Gunduz I E, Kyratsi T, Doumanidis C C, Rebholz C 2013 Vacuum 96 73Google Scholar

    [14]

    Hao G L, Li Y C, Wang X F, Wang W G, Wang X F, Wang D, Li X Y 2020 Chin. Phys. Lett. 37 036102Google Scholar

    [15]

    Ivanov E, Grigorieva T, Golubkova G, Boldyrev V, Fasman A B, Mikailenko S D, Kalinina O T 1988 Mater. Lett. 7 51Google Scholar

    [16]

    Mchael A 1990 Phys. Rev. Lett. 64 487Google Scholar

    [17]

    Maric R, Ishihara K N, Shingu P H 1996 J. Mater. Sci. Lett. 15 1180Google Scholar

    [18]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [19]

    Han F S, Zhu Z G and Gao J C 1999 Metall. Mater. Trans. A 30 771Google Scholar

    [20]

    Nowich A S, Berry B S, 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p454

    [21]

    方前锋 1996 金属学报 32 565

    Fang Q F 1996 Acta Metall. Sin. 32 565

    [22]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第196−200页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) pp196−200 (in Chinese)

    [23]

    王清周 2006 博士学位论文 (合肥: 中国科学院固体物理研究所)

    Wang Q Z 2006 Ph. D. Dissertation (Hefei: Institute of Solid State Physics Chinese Academy of Sciences) (in Chinese)

    [24]

    Zheng L Q, Fang Q F 2001 J. Phys. Condens. Matter 13 3411Google Scholar

    [25]

    Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce J C 1999 Mater. Sci. Eng., A 262 279Google Scholar

    [26]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Deng Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys. Sin. 69 136601Google Scholar

    [27]

    Schwarz R B, Johnson W L 1983 Phys. Rev. Lett. 51 415Google Scholar

  • 图 1  球磨1 h后的Ni-Al粉末压坯IF和RDM与温度的关系

    Figure 1.  IF and RDM as a function of temperature for the Ni-Al powder compact milled for 1 h.

    图 2  球磨1 h后的Ni-Al粉末压坯内耗峰与测量频率的依赖关系

    Figure 2.  Dependence of internal friction peak on measuring frequency for the Ni-Al powder compact milled for 1 h.

    图 3  球磨1 h后的Ni-Al粉末压坯内耗峰与升温速率的依赖关系

    Figure 3.  Dependence of internal friction peak on heating rate for the Ni-Al powder compact milled for 1 h.

    图 4  不同温度热处理的Ni-Al粉末压坯XRD图谱 (a) 492 ℃; (b) 556 ℃; (c) 675 ℃ (三个温度分别对应于内耗峰起始温度、峰值温度和结束温度)

    Figure 4.  XRD patterns of Ni-Al powder compact milled for 1 h after heat treatment at different temperature: (a) 492 ℃; (b) 556 ℃; (c) 675 ℃ (three temperatures respectively corresponding to start temperature, peak temperature and end temperature of the internal friction peak).

    图 5  机械球磨对Ni-Al粉末压坯内耗峰的影响

    Figure 5.  Dependence of mechanical ball-milling on internal friction peak for the Ni-Al powder compact.

    图 6  不同球磨时间的Ni-Al粉末混合物的XRD图谱 (a) 0 h; (b) 1 h; (c) 2 h; (d) 10 h; (e) 20 h

    Figure 6.  XRD patterns of Ni-Al powder mixtures after ball-milling time for: (a) 0 h, (b) 1 h, (c) 2 h, (d) 10 h, (e) 20 h.

    图 7  不同球磨时间的Ni-Al粉末混合物的SEM图像(BSE模式) (a) 1 h; (b) 2 h; (c) 10 h; (d) 20 h

    Figure 7.  SEM images (BSE mode) of Ni-Al powder mixtures after ball-milling time for: (a) 1 h, (b) 2 h, (c) 10 h, (d) 20 h.

    图 8  球磨时间不同的Ni-Al粉末压坯热处理后XRD图谱 (a) 0 h, 559 ℃; (b) 1 h, 556 ℃; (c) 2 h, 533 ℃; (d) 10 h, 483 ℃; (e) 20 h, 434 ℃(热处理温度对应于球磨时间不同的样品的内耗峰的峰温)

    Figure 8.  XRD patterns of Ni-Al powder compact after heat treatment for the sample processing ball-milling for different time: (a) 0 h, 559 ℃; (b) 1 h, 556 ℃; (c) 2 h, 533 ℃; (d) 10 h, 483 ℃; (e) 20 h, 434 ℃ (the heat treatment temperatures corresponding to internal friction peak temperatures of ball-milled samples for different time).

    图 9  球磨时间不同的Ni-Al粉末压坯热处理后XRD图谱 (a) 0 h, 700 ℃; (b) 1 h, 675 ℃; (c) 2 h, 660 ℃; (d) 10 h, 625 ℃; (e) 20 h, 575 ℃ (热处理温度对应于球磨时间不同的样品的内耗峰的结束温度)

    Figure 9.  XRD patterns of Ni-Al powder compact after heat treatment for the sample processing ball-milling for different time: (a) 0 h, 700 ℃; (b) 1 h, 675 ℃; (c) 2 h, 660 ℃; (d) 10 h, 625 ℃; (e) 20 h, 575 ℃ (the heat treatment temperatures corresponding to end temperature of internal friction peak of ball-milled samples for different time).

  • [1]

    Camagu S T, Mathabathe N M, Motaung D E, Muller T F G, Arendse C J, Bolokang A S 2019 Vacuum 169 108919Google Scholar

    [2]

    Moshksar M M, Mirzaee M 2004 Intermetallics 12 1361Google Scholar

    [3]

    Mashreghi A, Moshksar M M 2009 J. Alloys Compd. 484 957Google Scholar

    [4]

    Chen T, Hampikia J M, Thadhani N N 1999 Acta Mater. 47 2567Google Scholar

    [5]

    Enayati M H, Karimzadeh F, Anvari S Z 2008 J. Mater. Process. Technol. 200 312Google Scholar

    [6]

    Mirale D B 1993 Acta Mater. 41 649Google Scholar

    [7]

    Chmielewski M, Nosewicz S, Pietrzak K, Rojek J, Strojny-Nedza A, Mackiewicz S, Dutkiewicz J 2014 J. Mater. Eng. Perform. 23 3875Google Scholar

    [8]

    Nuria C, Carlos R C L, Jose M G 2013 J. Mater. Res. Technol. 2 75Google Scholar

    [9]

    Movahedi B 2014 Adv. Powde. Technol. 25 871Google Scholar

    [10]

    Xiang Z D, Rose S R, Datta P K 2008 Scr. Mater. 59 99Google Scholar

    [11]

    Guo J T, Wang Z S, Sheng L Y, Zhou L Z, Yuan C, Chen Z G, Li Song 2012 Prog. Nat. Sci. 22 414Google Scholar

    [12]

    Hadjiafxenti A, Gunduz I E, Tsotsos C, Kyratsi T, Aouadi S M, Doumanidis C C, Rebholz C 2010 J. Alloys Compd. 505 467Google Scholar

    [13]

    Hadjiafxenti A, Gunduz I E, Kyratsi T, Doumanidis C C, Rebholz C 2013 Vacuum 96 73Google Scholar

    [14]

    Hao G L, Li Y C, Wang X F, Wang W G, Wang X F, Wang D, Li X Y 2020 Chin. Phys. Lett. 37 036102Google Scholar

    [15]

    Ivanov E, Grigorieva T, Golubkova G, Boldyrev V, Fasman A B, Mikailenko S D, Kalinina O T 1988 Mater. Lett. 7 51Google Scholar

    [16]

    Mchael A 1990 Phys. Rev. Lett. 64 487Google Scholar

    [17]

    Maric R, Ishihara K N, Shingu P H 1996 J. Mater. Sci. Lett. 15 1180Google Scholar

    [18]

    郝刚领, 许巧平, 李先雨, 王伟国 2019 物理学报 68 126101Google Scholar

    Hao G L, Xu Q P, Li X Y, Wang W G 2019 Acta Phys. Sin. 68 126101Google Scholar

    [19]

    Han F S, Zhu Z G and Gao J C 1999 Metall. Mater. Trans. A 30 771Google Scholar

    [20]

    Nowich A S, Berry B S, 1972 Anelastic Relaxation in Crystalline Solids (New York and London: Academic Press) p454

    [21]

    方前锋 1996 金属学报 32 565

    Fang Q F 1996 Acta Metall. Sin. 32 565

    [22]

    冯端 1999 金属物理学 (第三卷) (北京: 科学出版社) 第196−200页

    Feng D 1999 Metal Physics (Vol. 3) (Beijing: Science Press) pp196−200 (in Chinese)

    [23]

    王清周 2006 博士学位论文 (合肥: 中国科学院固体物理研究所)

    Wang Q Z 2006 Ph. D. Dissertation (Hefei: Institute of Solid State Physics Chinese Academy of Sciences) (in Chinese)

    [24]

    Zheng L Q, Fang Q F 2001 J. Phys. Condens. Matter 13 3411Google Scholar

    [25]

    Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce J C 1999 Mater. Sci. Eng., A 262 279Google Scholar

    [26]

    张宇文, 邓永和, 文大东, 赵鹤平, 高明 2020 物理学报 69 136601Google Scholar

    Zhang Y W, Deng Y H, Wen D D, Zhao H P, Gao M 2020 Acta Phys. Sin. 69 136601Google Scholar

    [27]

    Schwarz R B, Johnson W L 1983 Phys. Rev. Lett. 51 415Google Scholar

  • [1] Lu Xiao-Mei, Huang Feng-Zhen, Zhu Jin-Song. Domains in ferroelectrics: formation, structure, mobility and related properties. Acta Physica Sinica, 2020, 69(12): 127704. doi: 10.7498/aps.69.20200312
    [2] Zhou Zheng-Cun, Du Jie, Zhu Xiao-Bin, Yan Yong-Jian, Wang Xing-Fu. Snoek-type relaxation caused by interstitial atoms in sintered β-type Ti-Nb alloy. Acta Physica Sinica, 2019, 68(8): 086201. doi: 10.7498/aps.68.20182120
    [3] Hao Gang-Ling, Xu Qiao-Ping, Li Xian-Yu, Wang Wei-Guo. Internal friction characteristics of compacted billet of metal powder in sintering process. Acta Physica Sinica, 2019, 68(12): 126101. doi: 10.7498/aps.68.20190031
    [4] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [5] Jiang Wen-Quan, Du Guang-Yu, Ba De-Chun, Yang Fan. Micro-mechanism of damping vibration attenuation on porous metal coating. Acta Physica Sinica, 2015, 64(14): 146801. doi: 10.7498/aps.64.146801
    [6] Tang Zhi-Qiang, Qi Yan-Yong, Yi Yong, Ding Zhi-Jie. First-principles study of Ni-based metal compound. Acta Physica Sinica, 2012, 61(6): 067501. doi: 10.7498/aps.61.067501
    [7] Wu Xiao-Yi, Xiong Xiao-Min, Zhang Jin-Xiu. Torsion strain spectrum and its application to in phase transformation. Acta Physica Sinica, 2012, 61(1): 014601. doi: 10.7498/aps.61.014601
    [8] Wu Xiu-Sheng, Yang Chun-Li, Chen Zhi-Jun, Chen Chu-Sheng, Liu Wei. Low-frequency internal friction study of La1-xSrxFeO3-δ(0≤x≤2/3)system. Acta Physica Sinica, 2009, 58(9): 6419-6424. doi: 10.7498/aps.58.6419
    [9] Sun Wei, Wang Qing-Zhou, Han Fu-Sheng. The internal friction related to dislocation peak in a graphite particulate CuAlMn shape memory alloy composite. Acta Physica Sinica, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [10] Liu Wei-Shu, Zhang Bo-Ping, Li Jing-Feng, Liu Jing. Thermodynamic explanation of solid-state reactions in synthesis process of CoSb3 via mechanical alloying. Acta Physica Sinica, 2006, 55(1): 465-471. doi: 10.7498/aps.55.465
    [11] Peng Kai-Ping, Chen Wen-Zhe, Qian Kuang-Wu. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Physica Sinica, 2006, 55(7): 3569-3575. doi: 10.7498/aps.55.3569
    [12] Bai Suo-Zhu, Yao Bin, Zheng Da-Fang, Xing Guo-Zhong, Su Wen-Hui. Structural characterization and phase transition of an unknown phase of boron carbon nitride compound. Acta Physica Sinica, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [13] Zhang Hua-Li, Liu Wei, Li Dong-Cai, Wu Xiu-Sheng, Chen Chu-Sheng. Phase separation in La2NiO4+δ studied by lowfrequency internal friction technique. Acta Physica Sinica, 2004, 53(11): 3834-3838. doi: 10.7498/aps.53.3834
    [14] Wang Qiang, Zhou Zheng-Cun, Han Fu-Sheng. The two internal friction peaks in rapidly cooled Fe71Al29 alloy*. Acta Physica Sinica, 2004, 53(11): 3829-3833. doi: 10.7498/aps.53.3829
    [15] Guo Li-Jun, Zhu Fang-Qiu, Zhu Zhen-Gang. . Acta Physica Sinica, 2002, 51(2): 300-303. doi: 10.7498/aps.51.300
    [16] TANG XIN-FENG, CHEN LI-DONG, GOTO TAKASHI, HIRAI TOSHIO, YUAN RUN-ZHANG. SOLID STAE REACTION SYNTHESIS OF SKUTTERUDITE COMPOUNDS FexCo4-xSb12 AND THERMOELECTRIC PROPERTIES. Acta Physica Sinica, 2000, 49(6): 1120-1123. doi: 10.7498/aps.49.1120
    [17] Yang Kang-Sheng, Wu Guo-Tao, Zhang Xiao-Bin, Chen Xiao-Hua, Lu You-Nan, Wang Miao, Wang Chun-Sheng, He Pi-Mu, Xu Zhu-De, Li Wen-Zhu. . Acta Physica Sinica, 2000, 49(3): 522-526. doi: 10.7498/aps.49.522
    [18] LIANG YUN-FENG, SHUI JIA-PENG, CHEN GANG, ZHU ZHEN-GANG. INTERNAL FRICTION BEHAVIOUR OF THE SOLID-LIQUID TRANSITION IN THE Pb-Sn ALLOYS. Acta Physica Sinica, 2000, 49(7): 1327-1330. doi: 10.7498/aps.49.1327
    [19] LI XIAO-GUANG, HE YI-ZHEN. THEORETICAL ANALYSIS ON THE INTERNAL FRICTION OF METALLIC GLASSES NEAR Tg. Acta Physica Sinica, 1991, 40(4): 575-583. doi: 10.7498/aps.40.575
    [20] KE TING-SUI, YANG PEN-WEI. A STUDY ON THE DIFFUSION OF CARBON IN γ-IRON BY METHOD OF INTERNAL FRICTION. Acta Physica Sinica, 1957, 13(5): 409-416. doi: 10.7498/aps.13.409
Metrics
  • Abstract views:  5541
  • PDF Downloads:  50
  • Cited By: 0
Publishing process
  • Received Date:  30 August 2020
  • Accepted Date:  27 October 2020
  • Available Online:  24 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回