- 
				Ultraviolet femtosecond laser pulse is an important tool in studying ultrafast chemical and physical processes. Realizing broadband ultraviolet laser pluses with a wide tunable range would significantly facilitate the study of ultrafast processes. As an effective and convenient method, the cascaded four-wave mixing (CFWM) has been widely adopted to generate broadband and tunable ultraviolet femtosecond laser pulses. In this work, we carry out CFWM in MgO crystal by using two 400-nm pulses to generate tunable ultraviolet femtosecond pulse. The MgO crystal is chosen due to its high third-order nonlinear susceptibility, large band gap and high transmittance in the ultraviolet region. In the experiment, nine frequency up-converted and five frequency down-converted sidebands are observed. The measured wavelength and scattering angle of each sideband are consistent with the CFWM theory predictions. The wavelength range of the sidebands covers 350–450 nm. The total conversion efficiency of the ultraviolet sidebands is 1.2%, which is higher than the reported values with visible/near infrared driven lasers. Meanwhile, the spectra of the high-order sidebands present a Gaussian profile and can support a Fourier-transform-limited pulse duration of less than 50 fs. Besides, the central wavelengths of the sidebands can be effectively tuned by adjusting the time-delay between the two pre-chirped pump pulses. Our study provides an efficient and convenient scheme to generate short ultraviolet femtosecond pulses with a wide tunable range.[1] 戴姆特瑞德W 著 (姬扬 译) 2012 激光光谱学(第2卷): 实验技术 (北京: 科学出版社) 第466—468页 Demtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol.2): Experimental Techniques (Beijing: Science Press) pp466–468 (in Chinese) [2] Bruder L, Bangert U, Binz M, Uhl D, Vexiau R, Bouloufa M N, Dulieu O, Stienkemeier F 2018 Nat. Commun. 9 2519  Google Scholar Google Scholar[3] 姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第146—148页 Yao J Q 1995 Nonlinear Optical Frequency Conversion and Tunable Lasers (Beijing: Science Press) pp146–148 (in Chinese) [4] 叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第99—103页 Ye P X 2007 Nonlinear Optical Physics (Beijing: Peking University Press) pp99–103 (in Chinese) [5] He J P, Liu J, Kobayashi T 2014 Appl. Sci. 4 444  Google Scholar Google Scholar[6] Weigand R, Crespo H M 2015 Appl. Sci. 5 485  Google Scholar Google Scholar[7] Liu J, Kobayashi T 2010 Sensors 10 4296  Google Scholar Google Scholar[8] Crespo H M, Mendonça J T, Dos S A 2000 Opt. Lett. 25 829  Google Scholar Google Scholar[9] Weigand R, Mendon J T, Crespo H M 2009 Phys. Rev. A 79 063838  Google Scholar Google Scholar[10] Liu J, Zhang J, Kobayashi T 2008 Opt. Lett. 33 1494  Google Scholar Google Scholar[11] Wang P, Shen X, Zeng Z N, Liu J, Li R X, Xu Z Z 2019 Opt. Lett. 44 3952  Google Scholar Google Scholar[12] Liu J, Kobayashi T 2008 Opt. Express 16 22119  Google Scholar Google Scholar[13] Liu J, Kobayashi T, Wang Z 2009 Opt. Express 17 9226  Google Scholar Google Scholar[14] Wang P, Liu J, Li F J, Shen X, Li R X 2014 Appl. Phys. Lett. 105 201901  Google Scholar Google Scholar[15] Liu J, Kobayashi T 2010 Opt. Commun. 283 1114  Google Scholar Google Scholar[16] Wang P, Liu J, Li F J, Shen X, Li R X 2015 Photon. Res. 3 210  Google Scholar Google Scholar[17] 刘奇福, 李方家, 刘军 2014 物理学报 63 094209  Google Scholar Google ScholarLiu Q F, Li F J, Liu J 2014 Acta Phys. Sin. 63 094209  Google Scholar Google Scholar[18] Liu W M, Zhu L D, Fang C 2012 Opt. Lett. 37 3783  Google Scholar Google Scholar[19] Liu W M, Zhu L D, Wang L, Fang C 2013 Opt. Lett. 38 1772  Google Scholar Google Scholar[20] Zhi M C, Sokolov A V 2008 New J. Phys. 10 025032  Google Scholar Google Scholar[21] Zhi M C, Sokolov A V 2007 Opt. Lett. 32 2251  Google Scholar Google Scholar[22] Wang K, Zhi M C, Hua X, Strohaber J, Sokolov A V 2014 Appl. Opt. 53 2866  Google Scholar Google Scholar[23] Wang K, Alexandra Z, Zhi M C, Hua X, Sokolov A V 2015 Appl. Sci. 5 145  Google Scholar Google Scholar[24] Shutova M, Shutov A D, Zhdanova A A, Thompson J V, Sokolov A V 2019 Sci. Rep. 9 1565  Google Scholar Google Scholar[25] Takahashi J I, Matsubara E, Arima T, Hanamura E 2003 Phys. Rev. B 68 155102  Google Scholar Google Scholar[26] Takahashi J I, Kawabe Y, Hanamura E 2004 Opt. Express 12 1185  Google Scholar Google Scholar[27] Matsubara E, Inoue K, Hanamura E 2005 Phys. Rev. B 72 134101  Google Scholar Google Scholar[28] Matsuki H, Inoue K, Hanamura E 2007 Phys. Rev. B 75 024102  Google Scholar Google Scholar[29] Inoue K, Kato J, Hanamura E, Matsuki H, Matsubara E 2007 Phys. Rev. B 76 041101(R  Google Scholar Google Scholar[30] Takahashi J I, Keisuke M, Toshirou Y 2006 Opt. Lett. 31 1501  Google Scholar Google Scholar[31] Matsubara E, Sekikawa T, Yamashita M 2008 Appl. Phys. Lett. 92 071104  Google Scholar Google Scholar[32] Sokolov A V, Harris S E 2003 J. Opt. B 5 R1  Google Scholar Google Scholar[33] Zhi M C, Wang X, Sokolov A V 2008 Opt. Express 16 12139  Google Scholar Google Scholar[34] Shea J J 2004 IEEE Electri. Insul. M. 20 46  Google Scholar Google Scholar[35] Dharmadhikari J A, Dota K, Kritkika D, Mathur D, Dharmadhikari A K 2016 Appl. Phys. B 122 140  Google Scholar Google Scholar
- 
				
    
    
图 4 (a) AS1到AS9边带的理论计算中心波长(红色圆圈)和实验测量(黑色方块)之间的比对; (b) AS1到AS7边带的理论计算散射角(红色圆圈)和实验测量(黑色方块)之间的比对 Figure 4. (a) Comparison of calculated results (red circles) and experimental data (black squares) of central wavelengths of AS1 to AS9; (b) comparison of calculated results (red circles) and experimental data (black squares) of scattering angle of AS1 to AS7. 
- 
				
[1] 戴姆特瑞德W 著 (姬扬 译) 2012 激光光谱学(第2卷): 实验技术 (北京: 科学出版社) 第466—468页 Demtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol.2): Experimental Techniques (Beijing: Science Press) pp466–468 (in Chinese) [2] Bruder L, Bangert U, Binz M, Uhl D, Vexiau R, Bouloufa M N, Dulieu O, Stienkemeier F 2018 Nat. Commun. 9 2519  Google Scholar Google Scholar[3] 姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第146—148页 Yao J Q 1995 Nonlinear Optical Frequency Conversion and Tunable Lasers (Beijing: Science Press) pp146–148 (in Chinese) [4] 叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第99—103页 Ye P X 2007 Nonlinear Optical Physics (Beijing: Peking University Press) pp99–103 (in Chinese) [5] He J P, Liu J, Kobayashi T 2014 Appl. Sci. 4 444  Google Scholar Google Scholar[6] Weigand R, Crespo H M 2015 Appl. Sci. 5 485  Google Scholar Google Scholar[7] Liu J, Kobayashi T 2010 Sensors 10 4296  Google Scholar Google Scholar[8] Crespo H M, Mendonça J T, Dos S A 2000 Opt. Lett. 25 829  Google Scholar Google Scholar[9] Weigand R, Mendon J T, Crespo H M 2009 Phys. Rev. A 79 063838  Google Scholar Google Scholar[10] Liu J, Zhang J, Kobayashi T 2008 Opt. Lett. 33 1494  Google Scholar Google Scholar[11] Wang P, Shen X, Zeng Z N, Liu J, Li R X, Xu Z Z 2019 Opt. Lett. 44 3952  Google Scholar Google Scholar[12] Liu J, Kobayashi T 2008 Opt. Express 16 22119  Google Scholar Google Scholar[13] Liu J, Kobayashi T, Wang Z 2009 Opt. Express 17 9226  Google Scholar Google Scholar[14] Wang P, Liu J, Li F J, Shen X, Li R X 2014 Appl. Phys. Lett. 105 201901  Google Scholar Google Scholar[15] Liu J, Kobayashi T 2010 Opt. Commun. 283 1114  Google Scholar Google Scholar[16] Wang P, Liu J, Li F J, Shen X, Li R X 2015 Photon. Res. 3 210  Google Scholar Google Scholar[17] 刘奇福, 李方家, 刘军 2014 物理学报 63 094209  Google Scholar Google ScholarLiu Q F, Li F J, Liu J 2014 Acta Phys. Sin. 63 094209  Google Scholar Google Scholar[18] Liu W M, Zhu L D, Fang C 2012 Opt. Lett. 37 3783  Google Scholar Google Scholar[19] Liu W M, Zhu L D, Wang L, Fang C 2013 Opt. Lett. 38 1772  Google Scholar Google Scholar[20] Zhi M C, Sokolov A V 2008 New J. Phys. 10 025032  Google Scholar Google Scholar[21] Zhi M C, Sokolov A V 2007 Opt. Lett. 32 2251  Google Scholar Google Scholar[22] Wang K, Zhi M C, Hua X, Strohaber J, Sokolov A V 2014 Appl. Opt. 53 2866  Google Scholar Google Scholar[23] Wang K, Alexandra Z, Zhi M C, Hua X, Sokolov A V 2015 Appl. Sci. 5 145  Google Scholar Google Scholar[24] Shutova M, Shutov A D, Zhdanova A A, Thompson J V, Sokolov A V 2019 Sci. Rep. 9 1565  Google Scholar Google Scholar[25] Takahashi J I, Matsubara E, Arima T, Hanamura E 2003 Phys. Rev. B 68 155102  Google Scholar Google Scholar[26] Takahashi J I, Kawabe Y, Hanamura E 2004 Opt. Express 12 1185  Google Scholar Google Scholar[27] Matsubara E, Inoue K, Hanamura E 2005 Phys. Rev. B 72 134101  Google Scholar Google Scholar[28] Matsuki H, Inoue K, Hanamura E 2007 Phys. Rev. B 75 024102  Google Scholar Google Scholar[29] Inoue K, Kato J, Hanamura E, Matsuki H, Matsubara E 2007 Phys. Rev. B 76 041101(R  Google Scholar Google Scholar[30] Takahashi J I, Keisuke M, Toshirou Y 2006 Opt. Lett. 31 1501  Google Scholar Google Scholar[31] Matsubara E, Sekikawa T, Yamashita M 2008 Appl. Phys. Lett. 92 071104  Google Scholar Google Scholar[32] Sokolov A V, Harris S E 2003 J. Opt. B 5 R1  Google Scholar Google Scholar[33] Zhi M C, Wang X, Sokolov A V 2008 Opt. Express 16 12139  Google Scholar Google Scholar[34] Shea J J 2004 IEEE Electri. Insul. M. 20 46  Google Scholar Google Scholar[35] Dharmadhikari J A, Dota K, Kritkika D, Mathur D, Dharmadhikari A K 2016 Appl. Phys. B 122 140  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6550
- PDF Downloads: 89
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							