Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical model of maximum spreading diameter on superhydrophilic surfaces

Chun Jiang Wang Jin-Xuan Xu Chen Wen Rong-Fu Lan Zhong Ma Xue-Hu

Citation:

Theoretical model of maximum spreading diameter on superhydrophilic surfaces

Chun Jiang, Wang Jin-Xuan, Xu Chen, Wen Rong-Fu, Lan Zhong, Ma Xue-Hu
PDF
HTML
Get Citation
  • Liquid droplets impacting on the solid surface is an ubiquitous phenomenon in natural, agricultural, and industrial processes. The maximum spreading diameter of a liquid droplet impacting on a solid surface is a significant parameter in the industrial applications such as inkjet printing, spray coating, and spray cooling. However, former models cannot accurately predict the maximum spreading diameter on a superhydrophilic surface, especially under low Weber number (We). In this work, the spreading characteristics of a water droplet impacting on a superhydrophilic surface are explored by high-speed technique. The spherical cap of the spreading droplet, gravitational potential energy, and auxiliary dissipation are introduced into the modified theoretical model based on the energy balance. The model includes two viscous dissipation terms: the viscous dissipation of the initial kinetic energy and the auxiliary dissipation in spontaneous spreading. The energy component analysis in the spreading process shows that the kinetic energy, surface energy, and gravitational potential energy are all transformed into the viscous dissipation on the superhydrophilic surface. The transformation of surface energy into viscous dissipation is dominant at lower We while the transformation of kinetic energy into viscous dissipation is dominant at higher We. It is found that the gravitational potential energy and auxiliary dissipation play a significant role in spreading performance at low We according to the energy component analysis. Moreover, the energy components predicted by the modified model accord well with the experimental data. As a result, the proposed model can predict the maximum spreading diameter of a droplet impacting on the superhydrophilic surface accurately. Furthermore, the model proposed in this work can predict the maximum spreading diameter of the droplet impacting on the hydrophilic surface and hydrophobic surface. The results of this work are of great significance for controlling droplet spreading diameter in spray cooling and falling film evaporation.
      Corresponding author: Ma Xue-Hu, xuehuma@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51836002, 52006025) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT20RC(3)016))
    [1]

    Liang G, Mudawar I 2016 Int. J. Heat Mass Transfer 101 577Google Scholar

    [2]

    马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩 2018 化工学报 69 9Google Scholar

    Ma X H, Lan Z, Wang K, Chen Y S, Cheng Y Q, Du B G, Ye X 2018 J. Chem. Ind. Eng. 69 9Google Scholar

    [3]

    Snoeijer J H, Andreotti B 2013 Annu. Rev. Fluid Mech. 45 269Google Scholar

    [4]

    朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765Google Scholar

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 J. Chem. Ind. Eng. 65 765Google Scholar

    [5]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [6]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335Google Scholar

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335Google Scholar

    [7]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702Google Scholar

    [8]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [9]

    Wang Y B, Wang Y F, Gao S R, Yang Y R, Wang X D, Chen M 2020 Langmuir 36 9306Google Scholar

    [10]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [11]

    Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L 2017 NPG Asia Mater. 9 1Google Scholar

    [12]

    王高远, 胥蕊娜, 陈剑楠, 陈学, 姜培学 2018 工程热物理学报 39 1797Google Scholar

    Wang G Y, Xu R N, Chen J N, Chen X, Jiang P X 2018 J. Eng. Thermphys. 39 1797Google Scholar

    [13]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interface Sci. 516 86Google Scholar

    [14]

    Lee J B, Derome D, Guyer R, Carmeliet J 2016 Langmuir 32 1299Google Scholar

    [15]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [16]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [17]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2018 Int. J. Heat Mass Transfer 124 1025Google Scholar

    [18]

    范瑶, 王宏, 朱恂, 黄格永, 丁玉栋, 廖强 2016 化工学报 67 2709Google Scholar

    Fan Y, Wang H, Zhu X, Huang G Y, Ding Y D, Liao Q 2016 J. Chem. Ind. Eng. 67 2709Google Scholar

    [19]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2019 Int. J. Heat Mass Transfer 138 844Google Scholar

    [20]

    Chen M, Wu D, Chen D, Deng J, Liu H, Jiang J 2020 Chem. Eng. Sci. 226 115864Google Scholar

    [21]

    焦云龙, 刘小君, 逄明华, 刘焜 2016 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2016 Acta Phys. Sin. 65 016801Google Scholar

    [22]

    叶学民, 李永康, 李春曦 2016 物理学报 65 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 234701Google Scholar

    [23]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

    [24]

    Liang G, Chen Y, Chen L, Shen S 2019 Ind. Eng. Chem. Res. 58 10053Google Scholar

    [25]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [26]

    Lee J B, Laan N, de Bruin K G, Skantzaris G, Shahidzadeh N, Derome D, Carmeliet J, Bonn D 2016 J. Fluid Mech. 786 R4Google Scholar

    [27]

    Chandra S, Avedisian C T 1991 Proc. R. Soc. A 432 13Google Scholar

    [28]

    Pasandideh‐Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [29]

    Mao T, Kuhn D C S, Tran H 1997 AlChE J. 43 2169Google Scholar

    [30]

    Ukiwe C, Kwok D Y 2005 Langmuir 21 666Google Scholar

    [31]

    Huang H M, Chen X P 2018 Phys. Fluids 30 022106Google Scholar

    [32]

    Park H, Carr W W, Zhu J, Morris J F 2003 AlChE J. 49 2461Google Scholar

    [33]

    Li Ri, Ashgriz Nasser, Sanjeev C 2010 J. Fluids Eng. 132 061302Google Scholar

    [34]

    Gao X, Li R 2014 AlChE J. 60 2683Google Scholar

    [35]

    Wang F, Yang L, Wang L, Zhu Y, Fang T 2019 Langmuir 35 3204Google Scholar

    [36]

    Panda A, Pati A R, Saha B, Kumar A, Mohapatra S S 2019 Chem. Eng. Sci. 207 527Google Scholar

    [37]

    Zhang Z, Jiang P X, Christopher D M, Liang X-G 2015 Int. J. Heat Mass Transfer 80 26Google Scholar

    [38]

    Zheng Y, Ma X, Li Y, Jiang R, Wang K, Lan Z, Liang Q 2017 Appl. Therm. Eng. 111 1548Google Scholar

    [39]

    Nam Y, Ju Y S 2013 J. Adhes. Sci. Technol. 27 2163Google Scholar

    [40]

    Vadillo D C, Soucemarianadin A, Delattre C, Roux D C D 2009 Phys. Fluids 21 122002Google Scholar

  • 图 1  液滴铺展实验系统(A: 高速摄像机(Photron APX RS); B: 高速摄像机(Photron Mini UX100); C: 微量注射泵(LSP01-1 BH); D: 液滴生成装置; E: 恒温台; F: 高亮光源; G: 数据采集设备; G: 精确自动控制位移的直线位移滑台)

    Figure 1.  The droplet spreading experiment platform. (A: high speed camera (Photron APX RS); B: high speed camera (Photron Mini UX100); C: micro syringe pump (LSP01-1 BH); D: droplet generating device; E: heating platform; F: diffuse light source; G: data acquisition computer; H: linear displacement slide.

    图 2  (a)光滑铜表面的SEM图; (b)超亲水表面SEM图

    Figure 2.  SEM images of (a) smooth copper surface and (b) superhydrophilic surface.

    图 3  液滴铺展过程 (a)光滑铜亲水表面; (b)超亲水表面We = 1.91; (c)超亲水表面We = 25.59

    Figure 3.  Droplet spreading process: (a) Smooth copper hydrophilic surface; (b) superhydrophilic surface at We = 1.91; (c) superhydrophilic surface at We = 25.59.

    图 4  液滴在不同We下撞击超亲水表面铺展因子随时间的变化过程

    Figure 4.  The variation of spreading factor β with time

    图 5  液滴在超亲水表面最大铺展直径形态

    Figure 5.  Sketch of droplet shape at its maximum spread on superhydrophilic surface.

    图 6  (a)模型计算的ΔEk, ΔEs, W, ΔEpWe的变化; (b)低We下ΔEk, ΔEs, W, ΔEp占总能量的占比(青色区域放大)

    Figure 6.  (a) Variation of the energy component: ΔEk, ΔEs, W, ΔEp with We; (b) comparison of the energy component: ΔEk, ΔEs, W, ΔEp at low We

    图 7  (a)超亲水表面液滴铺展过程各项黏性耗散实验和模型计算值对比; b)低We下总黏性耗散中WvisWad的占比(青色区域放大)

    Figure 7.  (a) Variation of the viscous dissipation components value with We; (b) comparison of the Wvis, Wad at low We.

    图 8  液滴在不同We下撞击超亲水表面最大铺展因子的实验和模型预测结果对比(模型包括去除重力势能或辅助耗散的模型及全部考虑的模型)

    Figure 8.  Comparison of the current experimental measurements of βm with the theoretical prediction from model (models includes without Ep, without Wad and present model).

    表 1  基于能量守恒的最大铺展因子的预测模型

    Table 1.  Theoretical models for predicting the maximum spreading factor.

    文献最大铺展模型预测表达式表面润湿
    性/(°)
    We液滴形态
    Lee等[14]$\begin{aligned} \rho {V_0}{D_0} + 12\sigma\qquad\qquad\qquad\qquad\quad\qquad\qquad\qquad\qquad \\= 3\sigma (1 - \cos \theta )\beta _{\rm{m} }^2 + 8\sigma \dfrac{1}{ { {\beta _{\rm{m} } } } } + 3\sqrt { {b / c} } \rho V_{\rm{0} }^2{D_0}\beta _{\rm{m} }^{ {5 / 2} }\dfrac{1}{ {\sqrt {Re} } }\end{aligned}$60—1151—290圆饼
    Chandra等[27]$\dfrac{3}{2}\dfrac{ {We} }{ {Re} }\beta _{\rm{m} }^4 + \left( {1 - \cos \theta } \right)\beta _{\rm{m} }^2 - \left( {\dfrac{1}{3}We + 4} \right) = 0$~32~43圆饼
    Pasandideh-
    Fard等[28]
    ${\beta _{\rm{m} } } = \sqrt {\dfrac{ {We + 12} }{ {3\left( {1 - \cos {\theta _{\rm{a} } } } \right) + 4\left( { { {We} / {\sqrt {Re} } } } \right)} } }$27—14027—447圆饼
    Mao等[29]$\left( {\dfrac{ {1 - \cos \theta } }{4} + 0.35\dfrac{ {We} }{ {\sqrt {Re} } } } \right)\beta _{\rm{m} }^4 - \left( {\dfrac{ {We} }{ {12} } + 1} \right)\beta + \dfrac{2}{3} = 0$30—1205—1000圆饼
    Ukiwe等[30]$\left( {We + 12} \right){\beta _{\rm{m} } } = 8 + \beta _{\rm{m} }^3\left[ {3\left( {1 - \cos \theta } \right) + 4\dfrac{ {We} }{ {\sqrt {Re} } } } \right]$57—9018—370圆饼
    Huang等[31]$\begin{aligned}\frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \frac{ {We^*} }{ {\sqrt {Re^*} } } } \right)\beta _{\rm{m} }^4 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^3 \qquad\\ - \left( {We + 12} \right){\beta _{\rm{m} } } + 8 = 0, ~~{V_0} < V^* \qquad\qquad\qquad\end{aligned}$


    $\begin{aligned} \frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \frac{ {We^*} }{ {\sqrt {Re^*} } }\frac{ {Re^*} }{ {Re} } } \right)\beta _{\rm{m} }^4 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^3 \\ - \left( {We + 12} \right){\beta _{\rm{m} } } + 8 = 0,~~ {V_0} > V^*\qquad\qquad\qquad \end{aligned}$
    64—1102—500圆饼
    Park等[32]$\begin{aligned} \left( {0.33\frac{ {We} }{ {\sqrt {Re} } } - \frac{1}{4}\cos \theta + \frac{1}{2}\left( {\frac{ {1 - \cos {\theta _{\rm{a} } } } }{ { { {\sin }^2}{\theta _{\rm{a} } } } } } \right)} \right)\beta _{\rm{m} }^2 \\ - 1 - \frac{ {We} }{ {12} } + \frac{ {\Delta {E_{\rm{s} } } } }{ { {\text{π} }D_0^2\sigma } } = 0 \qquad\qquad\qquad\qquad\quad\end{aligned}$31—1130.2—180球冠
    Li等[33]$\dfrac{ {We} }{ {12} }\left( {1 - {C_{\rm{k} } } - \dfrac{3}{ {2\sqrt {Re} } }\displaystyle\int_{ {H_{\rm{m} } } }^{ {H_{\rm{s} } } } { {d^2}{\rm{d} }h} } \right) = {C_{\rm{S} } }P\left( { {D_{\rm{e} } } } \right) - P\left( { {D_{ {\rm{max} } } } } \right)$30—1500—10球冠
    Gao等[34]$\begin{aligned} 1 + \frac{ {We} }{ {12} } = \frac{1}{6}\left[ {\frac{1}{ { { {\hat r}_{\rm{c} } } } } + \frac{1}{ { { {\hat R}_{\rm{c} } } } } } \right] + 4{\theta _{\rm{a} } }{ {\hat r}_{\rm{c} } }{ {\hat R}_{\rm{c} } } + {\left( { { {\hat R}_{\rm{c} } } - { {\hat r}_{\rm{c} } }\sin {\theta _{\rm{a} } } } \right)^2} \\ + {\left( { { {\hat R}_{\rm{c} } } + { {\hat r}_{\rm{c} } }\sin {\theta _{\rm{a} } } } \right)^2}\left( {\frac{4}{3}\frac{ {We} }{ {\sqrt {Re} } } - \cos {\theta _{\rm{a} } } } \right) \qquad\quad\end{aligned}$74—155135—210圆环
    Wang等[35]$\begin{aligned} We + 12 =\qquad \qquad\qquad \qquad\qquad \qquad\qquad\qquad\qquad\qquad\qquad \qquad\\ \frac{3}{4}\left( {\frac{ {We} }{ {\sqrt {Re} } } + \alpha \frac{ {W{e_{\rm{c} } } } }{ {\sqrt {R{e_{\rm{c} } } } } } } \right)\beta _{\rm{m} }^3 + 3\left( {1 - \cos {\theta _{\rm{a} } } } \right)\beta _{\rm{m} }^2 + 12\bigg\{ \frac{ {\xi _{\rm{r} }^2} }{ { { {\left( {1 - \cos {\theta _{\rm{m} } } } \right)}^2} } } \\ \times \bigg[ {\sin ^2}{\theta _{\rm{m} } } - \frac{ { {\beta _{\rm{m} } } } }{ { {\xi _{\rm{r} } } } }\sin {\theta _{\rm{m} } }(1 - \cos {\theta _{\rm{m} } }) + 2(1 - \cos {\theta _{\rm{m} } }) \bigg] \qquad \qquad \qquad \\ \left. + 2{\xi _{\rm{r} } }\left( {\frac{ { {\beta _{\rm{m} } } } }{2} - {\xi _{\rm{r} } }\frac{ {\sin {\theta _{\rm{m} } } } }{ {1 - \cos {\theta _{\rm{m} } } } } } \right)\left( {\left| {1 - \kappa } \right| + \frac{ { {\theta _{\rm{m} } } } }{ {1 - \cos {\theta _{\rm{m} } } } } } \right) \right\}\qquad\qquad \quad \end{aligned}$34—1000.1—427环状-薄片
    DownLoad: CSV

    表 2  超亲水表面最大铺展因子βm实验结果与以往典型模型预测值[27-32]之间的比较

    Table 2.  Comparison of previous model[27-32] prediction value of βm with experimental data

    V0/(m·s–1)Weβm-expChandra 等[27]Pasandideh-Fard 等[28]Mao等[29]Park等[32]Ukiwe 等[30]Huang等[31]
    0.251.913.412.46.373.0511.315.840.58
    0.445.903.462.14.822.557.934.420.44
    0.6010.773.601.974.372.416.674.020.35
    0.7115.263.821.934.202.376.093.900.29
    0.9325.593.931.894.072.355.413.820.20
    13051.174.081.904.082.384.93.930.12
    1.5068.594.261.914.132.414.783.930.10
    1.89109.34.431.934.262.474.674.070.06
    2.35168.984.701.974.422.544.664.240.04
    2.8239.894.902.004.572.604.724.390.03
    3.08290.085.002.024.672.644.764.480.02
    DownLoad: CSV

    表 3  本文模型预测值与文献[28,29]中不同润湿性表面的最大铺展因子的实验值对比

    Table 3.  Comparison of current theoretical model of βm with experimental data in literature[28,29].

    固体/液体D0, mmV0/(m·s–1)Weθ/(°)βm-expβm-model(βm-expβm-model)/ βm-model
    玻璃/水2.70.5511.21371.772.410.26
    玻璃/水2.70.8224.91372.202.740.19
    玻璃/水2.71.0037.05372.532.940.14
    玻璃/水2.71.5892.48373.113.510.11
    玻璃/水2.71.86128.17373.703.810.03
    玻璃/水2.72.77284.26374.504.480.00
    玻璃/水2.73.72512.67374.944.890.01
    不锈钢/水2.70.5511.21671.671.950.14
    不锈钢/水2.70.8224.91672.162.280.05
    不锈钢/水2.71.0037.05672.342.510.06
    不锈钢/水2.71.5892.48673.093.130.01
    不锈钢/水2.71.86128.17673.673.380.08
    不锈钢/水2.72.77284.26674.424.150.06
    不锈钢/水2.73.72512.67674.884.650.05
    石蜡/水2.70.5511.21971.651.580.04
    石蜡/水2.70.8224.91972.101.910.10
    石蜡/水2.71.0037.05972.262.130.06
    石蜡/水2.71.5892.48973.012.790.07
    石蜡/水2.71.86128.17973.603.090.16
    石蜡/水2.72.77284.26974.323.890.11
    石蜡/水2.73.72512.67974.784.440.08
    蜂蜡/水0.622.61591112.652.190.21
    蜂蜡/水0.783.291181113.182.760.15
    蜂蜡/水0.893.711711113.453.090.11
    蜂蜡/水0.984.002191113.793.330.14
    蜂蜡/水1.054.282711113.913.530.10
    DownLoad: CSV
  • [1]

    Liang G, Mudawar I 2016 Int. J. Heat Mass Transfer 101 577Google Scholar

    [2]

    马学虎, 兰忠, 王凯, 陈彦松, 程雅琦, 杜宾港, 叶轩 2018 化工学报 69 9Google Scholar

    Ma X H, Lan Z, Wang K, Chen Y S, Cheng Y Q, Du B G, Ye X 2018 J. Chem. Ind. Eng. 69 9Google Scholar

    [3]

    Snoeijer J H, Andreotti B 2013 Annu. Rev. Fluid Mech. 45 269Google Scholar

    [4]

    朱君悦, 段远源, 王晓东, 闵琪 2014 化工学报 65 765Google Scholar

    Zhu J Y, Duan Y Y, Wang X D, Min Q 2014 J. Chem. Ind. Eng. 65 765Google Scholar

    [5]

    刘海龙, 沈学峰, 王睿, 曹宇, 王军锋 2018 力学学报 50 1024Google Scholar

    Liu H L, Shen X F, Wang R, Cao Y, Wang J F 2018 Acta Mech. Sin. 50 1024Google Scholar

    [6]

    闵琪, 段远源, 王晓东, 吴莘馨 2013 热科学与技术 12 335Google Scholar

    Min Q, Duan Y Y, Wang X D, Wu X X 2013 J. Therm. Sci. Technol. 12 335Google Scholar

    [7]

    Hu H B, Chen L B, Bao L Y, Huang S H 2014 Chin. Phys. B 23 074702Google Scholar

    [8]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185Google Scholar

    [9]

    Wang Y B, Wang Y F, Gao S R, Yang Y R, Wang X D, Chen M 2020 Langmuir 36 9306Google Scholar

    [10]

    Hu H B, Huang S H, Chen L B 2013 Chin. Phys. B 22 084702Google Scholar

    [11]

    Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L 2017 NPG Asia Mater. 9 1Google Scholar

    [12]

    王高远, 胥蕊娜, 陈剑楠, 陈学, 姜培学 2018 工程热物理学报 39 1797Google Scholar

    Wang G Y, Xu R N, Chen J N, Chen X, Jiang P X 2018 J. Eng. Thermphys. 39 1797Google Scholar

    [13]

    Lin S, Zhao B, Zou S, Guo J, Wei Z, Chen L 2018 J. Colloid Interface Sci. 516 86Google Scholar

    [14]

    Lee J B, Derome D, Guyer R, Carmeliet J 2016 Langmuir 32 1299Google Scholar

    [15]

    Tang C, Qin M, Weng X, Zhang X, Zhang P, Li J, Huang Z 2017 Int. J. Multiphase Flow 96 56Google Scholar

    [16]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [17]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2018 Int. J. Heat Mass Transfer 124 1025Google Scholar

    [18]

    范瑶, 王宏, 朱恂, 黄格永, 丁玉栋, 廖强 2016 化工学报 67 2709Google Scholar

    Fan Y, Wang H, Zhu X, Huang G Y, Ding Y D, Liao Q 2016 J. Chem. Ind. Eng. 67 2709Google Scholar

    [19]

    Ding B, Wang H, Zhu X, Chen R, Liao Q 2019 Int. J. Heat Mass Transfer 138 844Google Scholar

    [20]

    Chen M, Wu D, Chen D, Deng J, Liu H, Jiang J 2020 Chem. Eng. Sci. 226 115864Google Scholar

    [21]

    焦云龙, 刘小君, 逄明华, 刘焜 2016 物理学报 65 016801Google Scholar

    Jiao Y L, Liu X J, Pang M H, Liu K 2016 Acta Phys. Sin. 65 016801Google Scholar

    [22]

    叶学民, 李永康, 李春曦 2016 物理学报 65 234701Google Scholar

    Ye X M, Li Y K, Li C X 2016 Acta Phys. Sin. 65 234701Google Scholar

    [23]

    Roisman I V 2009 Phys. Fluids 21 052104Google Scholar

    [24]

    Liang G, Chen Y, Chen L, Shen S 2019 Ind. Eng. Chem. Res. 58 10053Google Scholar

    [25]

    Laan N, de Bruin K G, Bartolo D, Josserand C, Bonn D 2014 Phys. Rev. Appl. 2 044018Google Scholar

    [26]

    Lee J B, Laan N, de Bruin K G, Skantzaris G, Shahidzadeh N, Derome D, Carmeliet J, Bonn D 2016 J. Fluid Mech. 786 R4Google Scholar

    [27]

    Chandra S, Avedisian C T 1991 Proc. R. Soc. A 432 13Google Scholar

    [28]

    Pasandideh‐Fard M, Qiao Y M, Chandra S, Mostaghimi J 1996 Phys. Fluids 8 650Google Scholar

    [29]

    Mao T, Kuhn D C S, Tran H 1997 AlChE J. 43 2169Google Scholar

    [30]

    Ukiwe C, Kwok D Y 2005 Langmuir 21 666Google Scholar

    [31]

    Huang H M, Chen X P 2018 Phys. Fluids 30 022106Google Scholar

    [32]

    Park H, Carr W W, Zhu J, Morris J F 2003 AlChE J. 49 2461Google Scholar

    [33]

    Li Ri, Ashgriz Nasser, Sanjeev C 2010 J. Fluids Eng. 132 061302Google Scholar

    [34]

    Gao X, Li R 2014 AlChE J. 60 2683Google Scholar

    [35]

    Wang F, Yang L, Wang L, Zhu Y, Fang T 2019 Langmuir 35 3204Google Scholar

    [36]

    Panda A, Pati A R, Saha B, Kumar A, Mohapatra S S 2019 Chem. Eng. Sci. 207 527Google Scholar

    [37]

    Zhang Z, Jiang P X, Christopher D M, Liang X-G 2015 Int. J. Heat Mass Transfer 80 26Google Scholar

    [38]

    Zheng Y, Ma X, Li Y, Jiang R, Wang K, Lan Z, Liang Q 2017 Appl. Therm. Eng. 111 1548Google Scholar

    [39]

    Nam Y, Ju Y S 2013 J. Adhes. Sci. Technol. 27 2163Google Scholar

    [40]

    Vadillo D C, Soucemarianadin A, Delattre C, Roux D C D 2009 Phys. Fluids 21 122002Google Scholar

  • [1] Huang Hu, Tian Ze-Bing. The nth-order self-resonance law of single wave train for surface capillary-gravity waves in deep water. Acta Physica Sinica, 2023, 72(5): 054701. doi: 10.7498/aps.72.20221281
    [2] Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by localized surface plasmon resonances. Acta Physica Sinica, 2022, 71(12): 128101. doi: 10.7498/aps.70.20220288
    [3] Zhang Jian-Guo,  Yi Zao,  Kang Yong-Qiang,  Ren Hao,  Wang Wen-Yan,  Zhou Jing-Fan,  Hao Hui-Zhen,  Chang Hui-Dong,  Gao Ying-Hao,  Chen Ya-Hui,  Li Yan-Na. A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [4] Ji Jian-Wei, Kazuya Yamamura, Deng Hui. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Physica Sinica, 2021, 70(6): 068102. doi: 10.7498/aps.70.20202014
    [5] Wang Kai-Yu, Pang Xiang-Long, Li Xiao-Guang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume. Acta Physica Sinica, 2021, 70(7): 076801. doi: 10.7498/aps.70.20201771
    [6] Ling Zhong-Huo, Wang Shuai, Zhang Jin-Cang, Zhang Yi-Zhu, Yan Tian-Min, Jiang Yu-Hai. The theoretical study of terahertz-streaking photoionization for ultrafast imaging of density matrix in rubidium atom. Acta Physica Sinica, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [7] Li Chun-Xi, Shi Zhi-Xian, Zhuang Li-Yu, Ye Xue-Min. Effect of surfactants on thin film spreading under influence of surface acoustic wave. Acta Physica Sinica, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [8] Hu Meng-Dan, Zhang Qing-Yu, Sun Dong-Ke, Zhu Ming-Fang. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [9] Xu Shao-Feng, Lou Ying-Hou, Wu Yao-Feng, Wang Xiang-Yang, He Ping. Fluid slip over hydrophobic surfaces in microchannels: a dissipative particle dynamics study. Acta Physica Sinica, 2019, 68(10): 104701. doi: 10.7498/aps.68.20182002
    [10] Jiao Yun-Long, Liu Xiao-Jun, Pang Ming-Hua, Liu Kun. Analyses of droplet spreading and the movement of wetting line on a solid surface. Acta Physica Sinica, 2016, 65(1): 016801. doi: 10.7498/aps.65.016801
    [11] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] Yang Ai-Bo, Chen Lin-Gen, Xie Zhi-Hui, Sun Feng-Rui. Comparative study on constructal optimizations of rectangular fins heat sink based on entransy dissipation rate minimization and maximum thermal resistance minimization. Acta Physica Sinica, 2015, 64(20): 204401. doi: 10.7498/aps.64.204401
    [13] Zhang Qian-Yun, Zeng Jie, Li Ji-Feng, Zhou Ya-Bin, Zhang Xian-Hui, Cao Hai-Dong. Study of prism surface plasmon resonance effect based on dielectric-aided layer. Acta Physica Sinica, 2014, 63(3): 034207. doi: 10.7498/aps.63.034207
    [14] Zhou Jian-Chen, Geng Xing-Guo, Lin Ke-Jun, Zhang Yong-Jian, Zang Du-Yang. Stick-slip transition of a water droplet vibrated on a superhydrophobic surface. Acta Physica Sinica, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [15] Wang Yue-Gang, Wen Chao-Bin, Zuo Zhao-Yang, Yang Jia-Sheng, Guo Zhi-Bin. Adaptive chaotic ant colony optimization-RD based gravity matching aided navigation. Acta Physica Sinica, 2014, 63(8): 089101. doi: 10.7498/aps.63.089101
    [16] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [17] Zou Zhi-Yu, Liu Xiao-Fang, Zeng Min, Yang Bai, Yu Rong-Hai, Jiang He, Tang Rui-He, Wu Zhang-Ben. Morphology control of gold nanoparticles on glass surface realized by electric field assisted dissolution method. Acta Physica Sinica, 2012, 61(10): 104208. doi: 10.7498/aps.61.104208
    [18] Bi Fei-Fei, Guo Ya-Li, Shen Sheng-Qiang, Chen Jue-Xian, Li Yi-Qiao. Experimental study of spread characteristics of droplet impacting solid surface. Acta Physica Sinica, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [19] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [20] Zhang Quan-Yi, Wu Yao-Yu, Peng Zheng, Liu Rui, Lu Kun-Quan, Hou Mei-Ying. The sinking depth of a projectile in granular media under gravity. Acta Physica Sinica, 2006, 55(12): 6203-6207. doi: 10.7498/aps.55.6203
Metrics
  • Abstract views:  9815
  • PDF Downloads:  285
  • Cited By: 0
Publishing process
  • Received Date:  15 November 2020
  • Accepted Date:  22 December 2020
  • Available Online:  11 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回