-
Focusing on the oblique frictional contact problem of hydrogel for soft robot, a numerical contact model is developed to analyze the nonlinear behaviors including local contact large deformation and friction effect of hydrogel soft material during oblique contact. Based on the constitutive relation of hyperelastic material, the updated free energy function of hydrogel is derived. The contact algorithm is given to compute the contact responses of both collinear contact example and oblique contact example. The applicability of classical Hertz contact theory is discussed. The influence of coefficient of friction on the stress distribution of contact zone and the contact states of contact surface are also investigated. The numerical results show that the material nonlinearity and the geometric nonlinearity (i.e. large deformation) of hydrogel lead to the invalidation of classical Hertz contact theory. For the oblique contact, the internal stress grads of hydrogel will be redistributed as the coefficient of friction increases. Meanwhile, the maximum stress position moves from underside to the contact surface. Two high stress zones occur inside and on the contact surface at the same time, respectively. Besides, when the coefficient of friction is smaller (i.e. μ < 0.05), for the collinear contact all contact points on the contact surface are in critical state from static friction to dynamic friction. But for the oblique contact, some contact points are always in stable static friction state.
-
Keywords:
- hydrogel /
- large deformation /
- oblique contact /
- friction
[1] Nagura M, Minourab N 1997 Polym. Gels Networks 5 455Google Scholar
[2] 卢同庆, 孙丹琪, 王继堃, 杨 孟, 王铁军 2018 中国科学: 技术科学 48 1288Google Scholar
Lu T Q, Sun D Q, Wang J K, Yang M, Wang T J 2018 Sci. Sin. Tech. 48 1288Google Scholar
[3] 张恩勉, 李紫秀, 孙蕾, 董点点, 梁毅, 魏钊, 张其清, 陈咏梅 2019 中国科学: 生命科学 49 250Google Scholar
Zhang E M, Li Z X, Sun L, Dong D D, Liang Y, Wei Z, Zhang Q Q, Chen Y M 2019 Sci. Sin. Vitae 49 250Google Scholar
[4] Gong J, Higa M, Iwasaki Y, Katsuyama Y, Osada Y 1997 J. Phys. Chem. B 101 5487Google Scholar
[5] Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X 2017 Nat. Commun. 8 14230Google Scholar
[6] Rus D L, Tolley M T 2015 Nature 521 467Google Scholar
[7] Kim S, Laschi C, Trimmer B 2013 Trends Biotechnol. 31 287Google Scholar
[8] 陈恩惠, 杨锦鸿, 李栋, 赵亚溥 2016 物理学报 65 188103Google Scholar
Chen E H, Yang J H, Li D, Zhao Y P 2016 Acta Phys. Sin. 65 188103Google Scholar
[9] 巫金波, 温维佳 2016 物理学报 65 188301Google Scholar
Wu J B, Wen W J 2016 Acta Phys. Sin. 65 188301Google Scholar
[10] Pilnik W, Rombouts F M 1985 Carbohydr. Res. 142 93Google Scholar
[11] Shoaib T, Espinosa-Marzal R M, Interfaces 2019 ACS Appl. Mater. Interfaces 45 42722Google Scholar
[12] Shoaib T, Heintz J, Lopezberganza J, Murobarrios R, Egner S A, Espinosamarzal R M 2018 Langmuir 34 756Google Scholar
[13] Katta J K, Marcolongo M S, Lowman A M, Mansmann K A 2004 Proceedings of the 30th Annual Northeast Bioengineering Conference, Springfield, MA, USA, April 17–18, 2004 p142
[14] Nakashima K, Sawae Y, Murakami T 2007 Tribol. Lett. 26 145Google Scholar
[15] Frey M T, Engler A, Discher D E, Lee J, Wang Y 2007 Methods Cell Biol. 83 47
[16] Long R, Hall M, Wu M, Hui C Y 2011 Biophys. J. 101 643Google Scholar
[17] Yang J, Shen Y 2019 Appl. Math. Modell. 74 94Google Scholar
[18] Hong W, Liu Z, Suo Z 2009 Int. J. Solids Struct. 46 3282Google Scholar
[19] Hong W, Zhao X, Zhou J, Suo Z 2008 J. Mech. Phys. Solids 56 1779Google Scholar
[20] Flory P J, Rehner J 1943 J. Chem. Phys. 11 512Google Scholar
-
图 8 接触面各点受力分析及接触合力Fc的大小 (a) 接触面各点受力分析图; (b) 不同摩擦系数下接触力Fc的各轴分量
Figure 8. Force analysis of each point of the contact surface and the magnitude of the contact force Fc: (a) Force analysis diagram of each point of the contact surface; (b) axis components of the contact force Fc under different friction coefficients.
-
[1] Nagura M, Minourab N 1997 Polym. Gels Networks 5 455Google Scholar
[2] 卢同庆, 孙丹琪, 王继堃, 杨 孟, 王铁军 2018 中国科学: 技术科学 48 1288Google Scholar
Lu T Q, Sun D Q, Wang J K, Yang M, Wang T J 2018 Sci. Sin. Tech. 48 1288Google Scholar
[3] 张恩勉, 李紫秀, 孙蕾, 董点点, 梁毅, 魏钊, 张其清, 陈咏梅 2019 中国科学: 生命科学 49 250Google Scholar
Zhang E M, Li Z X, Sun L, Dong D D, Liang Y, Wei Z, Zhang Q Q, Chen Y M 2019 Sci. Sin. Vitae 49 250Google Scholar
[4] Gong J, Higa M, Iwasaki Y, Katsuyama Y, Osada Y 1997 J. Phys. Chem. B 101 5487Google Scholar
[5] Yuk H, Lin S, Ma C, Takaffoli M, Fang N X, Zhao X 2017 Nat. Commun. 8 14230Google Scholar
[6] Rus D L, Tolley M T 2015 Nature 521 467Google Scholar
[7] Kim S, Laschi C, Trimmer B 2013 Trends Biotechnol. 31 287Google Scholar
[8] 陈恩惠, 杨锦鸿, 李栋, 赵亚溥 2016 物理学报 65 188103Google Scholar
Chen E H, Yang J H, Li D, Zhao Y P 2016 Acta Phys. Sin. 65 188103Google Scholar
[9] 巫金波, 温维佳 2016 物理学报 65 188301Google Scholar
Wu J B, Wen W J 2016 Acta Phys. Sin. 65 188301Google Scholar
[10] Pilnik W, Rombouts F M 1985 Carbohydr. Res. 142 93Google Scholar
[11] Shoaib T, Espinosa-Marzal R M, Interfaces 2019 ACS Appl. Mater. Interfaces 45 42722Google Scholar
[12] Shoaib T, Heintz J, Lopezberganza J, Murobarrios R, Egner S A, Espinosamarzal R M 2018 Langmuir 34 756Google Scholar
[13] Katta J K, Marcolongo M S, Lowman A M, Mansmann K A 2004 Proceedings of the 30th Annual Northeast Bioengineering Conference, Springfield, MA, USA, April 17–18, 2004 p142
[14] Nakashima K, Sawae Y, Murakami T 2007 Tribol. Lett. 26 145Google Scholar
[15] Frey M T, Engler A, Discher D E, Lee J, Wang Y 2007 Methods Cell Biol. 83 47
[16] Long R, Hall M, Wu M, Hui C Y 2011 Biophys. J. 101 643Google Scholar
[17] Yang J, Shen Y 2019 Appl. Math. Modell. 74 94Google Scholar
[18] Hong W, Liu Z, Suo Z 2009 Int. J. Solids Struct. 46 3282Google Scholar
[19] Hong W, Zhao X, Zhou J, Suo Z 2008 J. Mech. Phys. Solids 56 1779Google Scholar
[20] Flory P J, Rehner J 1943 J. Chem. Phys. 11 512Google Scholar
Catalog
Metrics
- Abstract views: 6137
- PDF Downloads: 79
- Cited By: 0