Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of optical and electronic properties of silicether/graphether heterostructure

Zhang Ying Liu Chun-Sheng

Citation:

Theoretical study of optical and electronic properties of silicether/graphether heterostructure

Zhang Ying, Liu Chun-Sheng
PDF
HTML
Get Citation
  • Since the discovery and synthesis of graphene, two-dimensional graphether and silicether materials have been predicted as novel semiconductors. A novel two-dimensional silicether/graphether heterostructure is designed by combining silicether and graphether, which has unique optical and electronic properties due to the properties of a single material synthesized by heterostructures. The electronic and optical properties of silicether/graphether heterostructure are studied by the first-principles calculations based on density functional theory. The binding energy and layer spacing for each of all considered 16 stacking patterns of the heterostructures are calculated. The results show that different stacking patterns have a small effect on the binding energy of the heterostructure. When the layer spacing is 2.21 Å, the stacking pattern in which the concave oxygen atoms of graphether are on the top of the concave oxygen atoms of silicether is the most stable. In addition, it has an indirect band gap of 0.63 eV, which is smaller than that of the silicether and graphether, respectively. By changing the external electric field and the biaxial strain strength, the band gap of the silicether/graphether heterostructure shows tunability. The compressive strain can increase the band gap of silicether/graphether heterostructure, while the band gap decreases with the tensile strain increasing. Especially, when the compressive strain is greater than –6%, the heterostructure undergoes an indirect-to-direct band gap transition, which is beneficial to its applications in optical devices. When the external electric field is applied, the band gap of the heterostructure changes linearly with the strength of the electric field, and the indirect band gap characteristic is maintained. The absorption coefficient of silicether/graphether heterostructure shows a strong peak in the ultraviolet light region. The maximum absorption coefficient can reach up to 1.7 × 105 cm–1 around 110 nm. Compared with that of monolayer graphether and silicether, the optical absorption of the heterostructure is significantly enhanced within the range from more than 80 nm to less than 170 nm. The results show that silicether/graphether heterostructure has an outstanding optical absorption in the ultraviolet region. Moreover, the silicether/graphether heterostructure also shows considerable absorption coefficient (1 × 104—4 × 104 cm–1) in the visible region, which makes it a potential material in photovoltaic applications. This work may provide a novel material with a promising prospect of potential applications in nanodevices.
      Corresponding author: Liu Chun-Sheng, csliu@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61974068, 11704198)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L 2013 ACS Nano 7 2898Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS nano 8 4033Google Scholar

    [6]

    Cui H, Zheng K, Zhang Y, Ye H, Chen X 2018 IEEE Electron Device Lett. 39 284Google Scholar

    [7]

    Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W 2014 Nature 516 78Google Scholar

    [8]

    Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S 2018 Nature 557 409Google Scholar

    [9]

    Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W 2019 Adv. Mater. 30 1704561

    [10]

    Li M, Han M K, Zhou J, Deng Q H, Zhou X B, Xue J M, Du S Y, Yin X W, Huang Q 2018 Adv. Electron. Mater. 4 1700617Google Scholar

    [11]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [12]

    Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C 2018 ACS Nano 12 56Google Scholar

    [13]

    Chen Z P, Xu C, Ma C Q, Ren W C, Cheng H M 2013 Adv. Mater. 25 1296Google Scholar

    [14]

    Wang G Z, Gao Z, Wang G P, Liu S W, Yang P, Qing Y 2014 Nano Res. 7 704Google Scholar

    [15]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y, 2016 Science 353 1137Google Scholar

    [16]

    Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F 2016 ACS Appl. Mater. Interfaces 8 21011Google Scholar

    [17]

    Ning M Q, Lu M M, Li J B, Chen Z, Dou Y K, Wang C Z, Rehman F, Cao M S, Jin H B 2015 Nanoscale 7 15734Google Scholar

    [18]

    Qing Y C, Nan H Y, Luo F, Zhou W C 2017 RSC Adv. 7 27755Google Scholar

    [19]

    Wu F, Xie A, Sun M X, Jiang W C, Zhang K 2017 Mater. Lett. 193 30Google Scholar

    [20]

    Lü H L, Zhang H Q, Ji G B 2016 Part. Part. Syst. Char. 33 656Google Scholar

    [21]

    Lan X L, Liang C Y, Wu M S, Wu N, He L A, Li Y B, Wang Z J 2018 J. Mater. Chem. C 122 18537Google Scholar

    [22]

    He D L, Wang Y, Song S L, Liu S, Deng Y 2017 ACS Appl. Mater. Interfaces 9 44839Google Scholar

    [23]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [24]

    Wang Z, Ki D, Chen H, Berger H, Macdonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339Google Scholar

    [25]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M 2015 Nat. Mater. 14 421Google Scholar

    [26]

    Wang Y, Ding Y 2015 Phys. Chem. Chem. Phys. 17 27769Google Scholar

    [27]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [28]

    Chen X P, Sun X, Yang D G, Meng R S, Tan C J, Yang Q, Liang Q H, Jiang J K 2016 J. Mater. Chem. C 4 10082Google Scholar

    [29]

    Ares P, Aguilargalindo F, Rodríguezsanmiguel D, Aldave D A, Díaztendero S, Alcamí M, Martín F, Gómezherrero J, Zamora F 2016 Adv. Mater. 30 6515Google Scholar

    [30]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S 2016 Nat. Commun. 7 13352Google Scholar

    [31]

    Davletshin A R, Ustiuzhanina S V, Kistanov A A, Saadatmand D, Dmitriev S V, Zhou K 2018 Physica B 534 63Google Scholar

    [32]

    Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C 2016 J. Mater. Chem. C 4 5434Google Scholar

    [33]

    Wei W, Dai Y, Niu C, Li X, Ma Y, Huang B 2015 J. Mater. Chem. C 3 11548Google Scholar

    [34]

    Li X, Chen W, Zhang S, Wang P, Zhong H, Lin S 2015 Nano Energy 16 310Google Scholar

    [35]

    Cai Y, Pei Q X, Zhang G, Zhang Y W 2016 J. Appl. Phys. 119 065102Google Scholar

    [36]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C. 5 9687Google Scholar

    [37]

    Cao H, Zhou Z, Zhou X, Cao J 2017 Comput. Mater. Sci. 139 179Google Scholar

    [38]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [39]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [40]

    Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A 2017 Sci. Adv. 3 e16018324Google Scholar

    [41]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fan J B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [42]

    Wang L, Zhou X, Ma T, Liu D M, Gao L, Li X, Zhang J, Hu Y Z, Wang H, Dai Y D, Luo J 2017 Nanoscale 9 10846Google Scholar

    [43]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [44]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [45]

    Rajagopal A K, Callaway J 1973 Phy. Rev. B 7 1912Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [47]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [48]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [49]

    Zhu J, Schwingenschlőgl U 2014 ACS Appl. Mater. Interfaces 6 11675Google Scholar

    [50]

    Jappor H R, Saleh Z A, Abdulsattar M A 2012 Adv. Mater. Sci. Eng. 2012 180679Google Scholar

    [51]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [52]

    Wang C, Xia Q, Nie Y, Rahman M, Guo G 2016 AIP Adv. 6 035204Google Scholar

    [53]

    Li X H, Wang B J, Cai X L, Zhang L W, Wang G D, Ke S H 2017 RSC Adv. 7 28393Google Scholar

    [54]

    Kou L 2012 J. Phys. Chem. Lett. 3 2934Google Scholar

    [55]

    Xiong A, Zhou X 2019 Mater. Res. Express 6 075907Google Scholar

    [56]

    Ke C, Wu Y, Zhou J, Wu Z, Zhang C, Li X, Kang J 2019 J. Phys. D 52 115101Google Scholar

    [57]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437Google Scholar

    [58]

    Houssa M, van den Broek B, Scalise E, Pourtois G, Afanas' Ev V, Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702Google Scholar

    [59]

    Liu Q, Li L, Li Y, Gao Z, Chen Z, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [60]

    Li W, Wang T, Dai X, Ma Y, Tang Y 2017 J. Alloys Compd. 705 486Google Scholar

    [61]

    Leroux M, Grandjean N, Laügt M, Massies J, Gil B, Lefebvre P, Bigenwald P 1998 Phys. Rev. B 58 13371Google Scholar

    [62]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [63]

    Hu W, Li Z, Yang J 2013 J. Chem. Phys. 138 054701Google Scholar

    [64]

    Chen X, Jiang J, Liang Q, Meng R, Tan C, Yang Q, Zhang S, Zeng H 2016 J. Mater. Chem. C 4 7406

    [65]

    Sun M, Chou J P, Gao J, Cheng Y, Hu A, Tang W, Zhang G 2018 ACS Omega 3 8514Google Scholar

  • 图 1  16种堆砌方式在不同层间距下的结合能

    Figure 1.  Binding energy of the sixteen stacking patterns under different interlayer distances.

    图 2  (a) 异质结构堆砌方式X的俯视图; (b) 堆砌方式X的侧视图; 红色、黄色和灰色的球分别代表氧原子、硅原子和碳原子

    Figure 2.  (a) Top view of stacking pattern X; (b) side view of the pattern X. O, Si and C atoms are presented by red, yellow and grey balls, respectively.

    图 3  能带结构图 (a)石墨醚; (b)硅醚; (c)硅醚/石墨醚异质结构, 其中点A, BC分别为态A, B和C在能带结构中的位置

    Figure 3.  Band structure: (a) Graphether; (b) silicether; (c) silicether/graphether heterostrure. Points A, B and C in panel (c) are the positions of states A, B and C in the energy band structure respectively.

    图 4  硅醚/石墨醚异质结构的TDOS (a)和PDOS (b), (c)

    Figure 4.  Total density (a) and partial density (b), (c) of the state of the graphether/silicether heterostructure.

    图 5  (a) 双轴应变下硅醚/石墨醚异质结构的带隙变化; (b) 双轴应变下态B和态C的能量; 应变为-6%时异质结构中(c)硅醚和(d)石墨醚的PDOS图; (e) 不同垂直电场强度下带隙变化

    Figure 5.  (a) Band gap variation of graphether/silicether heterostructure under biaxial strain; (b) energy of states B and C under biaxial strain; the partial density of the state of (c) silicether and (d) graphether in the heterostructure at -6% strain; (e) the band gap variation of silicether/graphether heterostructure under perpendicular electric field.

    图 6  双轴应变下的能带结构图

    Figure 6.  Band structure of silicether/graphether heterostructure under biaxial strain.

    图 7  不同垂直电场强度下的能带结构图

    Figure 7.  Band structure of silicether/graphether heterostructure under perpendicular electric field.

    图 8  石墨醚、硅醚和硅醚/石墨醚异质结构的光吸收效率

    Figure 8.  Optical absorption of silicether, graphether and silicether/graphether heterostructure.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Butler S Z, Hollen S M, Cao L 2013 ACS Nano 7 2898Google Scholar

    [3]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [4]

    Jiang J, Liang Q, Meng R, Yang Q, Tan C, Sun X, Chen X 2017 Nanoscale 9 2992Google Scholar

    [5]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D 2014 ACS nano 8 4033Google Scholar

    [6]

    Cui H, Zheng K, Zhang Y, Ye H, Chen X 2018 IEEE Electron Device Lett. 39 284Google Scholar

    [7]

    Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W 2014 Nature 516 78Google Scholar

    [8]

    Xia Y, Mathis T S, Zhao M Q, Anasori B, Dang A, Zhou Z, Cho H, Gogotsi Y, Yang S 2018 Nature 557 409Google Scholar

    [9]

    Wang H, Wu Y, Yuan X, Zeng G, Zhou J, Wang X, Chew J W 2019 Adv. Mater. 30 1704561

    [10]

    Li M, Han M K, Zhou J, Deng Q H, Zhou X B, Xue J M, Du S Y, Yin X W, Huang Q 2018 Adv. Electron. Mater. 4 1700617Google Scholar

    [11]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [12]

    Cai Y C, Shen J, Ge G, Zhang Y Z, Jin W Q, Huang W, Shao J J, Yang J, Dong X C 2018 ACS Nano 12 56Google Scholar

    [13]

    Chen Z P, Xu C, Ma C Q, Ren W C, Cheng H M 2013 Adv. Mater. 25 1296Google Scholar

    [14]

    Wang G Z, Gao Z, Wang G P, Liu S W, Yang P, Qing Y 2014 Nano Res. 7 704Google Scholar

    [15]

    Shahzad F, Alhabeb M, Hatter C B, Anasori B, Hong S M, Koo C M, Gogotsi Y, 2016 Science 353 1137Google Scholar

    [16]

    Han M K, Yin X W, Wu H, Hou Z X, Song C Q, Li X L, Zhang L T, Cheng L F 2016 ACS Appl. Mater. Interfaces 8 21011Google Scholar

    [17]

    Ning M Q, Lu M M, Li J B, Chen Z, Dou Y K, Wang C Z, Rehman F, Cao M S, Jin H B 2015 Nanoscale 7 15734Google Scholar

    [18]

    Qing Y C, Nan H Y, Luo F, Zhou W C 2017 RSC Adv. 7 27755Google Scholar

    [19]

    Wu F, Xie A, Sun M X, Jiang W C, Zhang K 2017 Mater. Lett. 193 30Google Scholar

    [20]

    Lü H L, Zhang H Q, Ji G B 2016 Part. Part. Syst. Char. 33 656Google Scholar

    [21]

    Lan X L, Liang C Y, Wu M S, Wu N, He L A, Li Y B, Wang Z J 2018 J. Mater. Chem. C 122 18537Google Scholar

    [22]

    He D L, Wang Y, Song S L, Liu S, Deng Y 2017 ACS Appl. Mater. Interfaces 9 44839Google Scholar

    [23]

    Zhang C, Zhao S, Jin C, Koh A L, Zhou Y, Xu W, Li Q, Xiong Q, Peng H, Liu Z 2015 Nat. Commun. 6 6519Google Scholar

    [24]

    Wang Z, Ki D, Chen H, Berger H, Macdonald A H, Morpurgo A F 2015 Nat. Commun. 6 8339Google Scholar

    [25]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-Gonzalez P, Carrega M 2015 Nat. Mater. 14 421Google Scholar

    [26]

    Wang Y, Ding Y 2015 Phys. Chem. Chem. Phys. 17 27769Google Scholar

    [27]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [28]

    Chen X P, Sun X, Yang D G, Meng R S, Tan C J, Yang Q, Liang Q H, Jiang J K 2016 J. Mater. Chem. C 4 10082Google Scholar

    [29]

    Ares P, Aguilargalindo F, Rodríguezsanmiguel D, Aldave D A, Díaztendero S, Alcamí M, Martín F, Gómezherrero J, Zamora F 2016 Adv. Mater. 30 6515Google Scholar

    [30]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S 2016 Nat. Commun. 7 13352Google Scholar

    [31]

    Davletshin A R, Ustiuzhanina S V, Kistanov A A, Saadatmand D, Dmitriev S V, Zhou K 2018 Physica B 534 63Google Scholar

    [32]

    Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C 2016 J. Mater. Chem. C 4 5434Google Scholar

    [33]

    Wei W, Dai Y, Niu C, Li X, Ma Y, Huang B 2015 J. Mater. Chem. C 3 11548Google Scholar

    [34]

    Li X, Chen W, Zhang S, Wang P, Zhong H, Lin S 2015 Nano Energy 16 310Google Scholar

    [35]

    Cai Y, Pei Q X, Zhang G, Zhang Y W 2016 J. Appl. Phys. 119 065102Google Scholar

    [36]

    Wang N, Cao D, Wang J, Liang P, Chen X, Shu H 2017 J. Mater. Chem. C. 5 9687Google Scholar

    [37]

    Cao H, Zhou Z, Zhou X, Cao J 2017 Comput. Mater. Sci. 139 179Google Scholar

    [38]

    Zhu G L, Ye X J, Liu C S 2019 Nanoscale 11 22482Google Scholar

    [39]

    Zhu G L, Ye X J, Liu C S, Yan X H 2020 Nanoscale Adv. 2 2835Google Scholar

    [40]

    Wilson N R, Nguyen P V, Seyler K, Rivera P, Marsden A J, Laker Z P L, Constantinescu G C, Kandyba V, Barinov A 2017 Sci. Adv. 3 e16018324Google Scholar

    [41]

    Xie Z F, Sun F W, Yao R, Zhang Y, Zhang Y H, Zhang Z H, Fan J B, Ni L, Duan L 2019 Appl. Surf. Sci. 475 839Google Scholar

    [42]

    Wang L, Zhou X, Ma T, Liu D M, Gao L, Li X, Zhang J, Hu Y Z, Wang H, Dai Y D, Luo J 2017 Nanoscale 9 10846Google Scholar

    [43]

    Zhang H 2015 ACS Nano 9 9451Google Scholar

    [44]

    Liu H, Gao J, Zhao J 2013 J. Phys. Chem. C 117 10353Google Scholar

    [45]

    Rajagopal A K, Callaway J 1973 Phy. Rev. B 7 1912Google Scholar

    [46]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [47]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [48]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [49]

    Zhu J, Schwingenschlőgl U 2014 ACS Appl. Mater. Interfaces 6 11675Google Scholar

    [50]

    Jappor H R, Saleh Z A, Abdulsattar M A 2012 Adv. Mater. Sci. Eng. 2012 180679Google Scholar

    [51]

    Peng X, Wei Q, Copple A 2014 Phys. Rev. B 90 085402Google Scholar

    [52]

    Wang C, Xia Q, Nie Y, Rahman M, Guo G 2016 AIP Adv. 6 035204Google Scholar

    [53]

    Li X H, Wang B J, Cai X L, Zhang L W, Wang G D, Ke S H 2017 RSC Adv. 7 28393Google Scholar

    [54]

    Kou L 2012 J. Phys. Chem. Lett. 3 2934Google Scholar

    [55]

    Xiong A, Zhou X 2019 Mater. Res. Express 6 075907Google Scholar

    [56]

    Ke C, Wu Y, Zhou J, Wu Z, Zhang C, Li X, Kang J 2019 J. Phys. D 52 115101Google Scholar

    [57]

    Chen X F, Lian J S, Jiang Q 2012 Phys. Rev. B 86 125437Google Scholar

    [58]

    Houssa M, van den Broek B, Scalise E, Pourtois G, Afanas' Ev V, Stesmans A 2013 Phys. Chem. Chem. Phys. 15 3702Google Scholar

    [59]

    Liu Q, Li L, Li Y, Gao Z, Chen Z, Lu J 2012 J. Phys. Chem. C 116 21556Google Scholar

    [60]

    Li W, Wang T, Dai X, Ma Y, Tang Y 2017 J. Alloys Compd. 705 486Google Scholar

    [61]

    Leroux M, Grandjean N, Laügt M, Massies J, Gil B, Lefebvre P, Bigenwald P 1998 Phys. Rev. B 58 13371Google Scholar

    [62]

    Du A, Sanvito S, Li Z, Wang D, Jiao Y, Liao T, Sun Q, Yun H N, Zhu Z, Amal R 2012 J. Am. Chem. Soc. 134 4393Google Scholar

    [63]

    Hu W, Li Z, Yang J 2013 J. Chem. Phys. 138 054701Google Scholar

    [64]

    Chen X, Jiang J, Liang Q, Meng R, Tan C, Yang Q, Zhang S, Zeng H 2016 J. Mater. Chem. C 4 7406

    [65]

    Sun M, Chou J P, Gao J, Cheng Y, Hu A, Tang W, Zhang G 2018 ACS Omega 3 8514Google Scholar

  • [1] Wang Na, Xu Hui-Fang, Yang Qiu-Yun, Zhang Mao-Lian, Lin Zi-Jing. First-principles study of strain-tunable charge carrier transport properties and optical properties of CrI3 monolayer. Acta Physica Sinica, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] Zhou Jia-Jian, Zhang Yu-Wen, He Chao-Yu, Ouyang Tao, Li Jin, Tang Chao. First-principles study of structure prediction and electronic properties of two-dimensional SiP2 allotropes. Acta Physica Sinica, 2022, 71(23): 236101. doi: 10.7498/aps.71.20220853
    [3] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [4] Qin Jing-Yun, Shu Qun-Wei, Yuan Yi, Qiu Wei, Xiao Li-Hua, Peng Ping, Lu Guo-Song. First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33WO3. Acta Physica Sinica, 2020, 69(4): 047102. doi: 10.7498/aps.69.20191577
    [5] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study on the electronic structures and optical properties of Cu, Fe doped LiNbO_3 crystals. Acta Physica Sinica, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [6] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [7] Pan Feng-Chun, Lin Xue-Ling, Chen Huan-Ming. Electronic structure and optical properties of C doped rutile TiO2: the first-principles calculations. Acta Physica Sinica, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [8] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [9] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [10] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [11] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [12] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [13] Yang Chun-Yan, Zhang Rong, Zhang Li-Min, Ke Xiang-Wei. Electronic structure and optical properties of 0.5NdAlO3-0.5CaTiO3 from first-principles calculation. Acta Physica Sinica, 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [14] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [15] Guan Li, Li Qiang, Zhao Qing-Xun, Guo Jian-Xin, Zhou Yang, Jin Li-Tao, Geng Bo, Liu Bao-Ting. First-principles study of the optical properties of ZnO doped with Al, Ni. Acta Physica Sinica, 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [16] Lin Zhu, Guo Zhi-You, Bi Yan-Jun, Dong Yu-Cheng. Ferromagnetism and the optical properties of Cu-doped AlN from first-principles study. Acta Physica Sinica, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [17] Kong Xiang-Lan, Hou Qin-Ying, Su Xi-Yu, Qi Yan-Hua, Zhi Xiao-Fen. First-principles study of the electronic structure and optical properties of Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [18] Li Xiao-Feng, Ji Guang-Fu, Peng Wei-Min, Shen Xiao-Meng, Zhao Feng. Elastic constants, electronic structure and optical properties of solid krypton under pressure by first-principles calculations. Acta Physica Sinica, 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [19] Bi Yan-Jun, Guo Zhi-You, Sun Hui-Qing, Lin Zhu, Dong Yu-Cheng. The electronic structure and optical properties of Co and Mn codoped ZnO from first-principle study. Acta Physica Sinica, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
Metrics
  • Abstract views:  4350
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  22 December 2020
  • Accepted Date:  06 February 2021
  • Available Online:  16 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回