Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of infrared electrochromic devices

Cheng Bai-Zhang Zhu Yu-Lin Yi Yang Tao Xin Jia Yan Liu Dong-Qing Cheng Hai-Feng

Citation:

Research progress of infrared electrochromic devices

Cheng Bai-Zhang, Zhu Yu-Lin, Yi Yang, Tao Xin, Jia Yan, Liu Dong-Qing, Cheng Hai-Feng
PDF
HTML
Get Citation
  • Infrared electrochromic device is a kind of device whose infrared emissivity can change reversibly under electric field excitation. This kind of device has important applications in the fields of adaptive infrared camouflage and intelligent thermal control, and has become a research frontier and hot spot in the field of infrared radiation control. In this paper, the working principle, research status and progress of infrared electrochromic devices based on metal oxides, conductive polymers, graphene and metals are summarized, and the development trend of infrared electrochromic device is analyzed.
      Corresponding author: Liu Dong-Qing, liudongqing07@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52073303)
    [1]

    Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar

    [2]

    Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar

    [3]

    Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar

    [4]

    Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar

    [5]

    Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar

    [6]

    Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar

    [7]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [8]

    Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar

    [9]

    Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar

    [10]

    Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar

    [11]

    Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar

    [12]

    Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar

    [13]

    Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203

    [14]

    Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar

    [15]

    Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar

    [16]

    Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699

    [17]

    Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar

    [18]

    Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar

    [19]

    Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar

    [20]

    Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar

    [21]

    Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar

    [22]

    Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar

    [23]

    Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar

    [24]

    Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar

    [25]

    Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar

    [26]

    Demiryont H 2008 SPIE 10.1117

    [27]

    Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar

    [28]

    Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330

    [29]

    Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar

    [30]

    Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar

    [31]

    Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar

    [32]

    Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar

    [33]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [34]

    Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar

    [35]

    Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar

    [36]

    Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar

    [37]

    Meisel T, Braun R 1992 SPIE 200 1728Google Scholar

    [38]

    Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar

    [39]

    Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar

    [40]

    Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar

    [41]

    Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar

    [42]

    Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar

    [43]

    Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar

    [44]

    Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [45]

    Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar

    [46]

    Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar

    [47]

    Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar

    [48]

    Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar

    [49]

    Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [51]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar

    [52]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [53]

    Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [54]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [55]

    Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar

    [56]

    Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar

    [57]

    Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar

    [58]

    Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar

    [59]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [60]

    Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar

    [61]

    Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar

    [62]

    Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar

    [63]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [64]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [65]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [66]

    Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar

    [67]

    Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar

    [68]

    Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar

    [69]

    Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar

    [70]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar

    [71]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar

    [72]

    Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar

    [73]

    Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar

  • 图 1  不同类型的WO3电致发射率动态调控器件 (a)多孔电极式[13]; (b)半导体电极式[19]; (c)金属网格电极式[18]; (d)超材料电极式[27]; (e) ITO电极式[29]

    Figure 1.  Several WO3 infrared electrochromic devices: (a) Device with porous electrode[13]; (b) device with semiconductor electrode[19]; (c) device with metal grid electrode[18]; (d) device with metamaterials electrode[27]; (e) device with ITO electrode[29].

    图 2  (a) LTO器件结构及工作原理示意图[32]; (b) LTO相变过程示意图[32]; (c) 器件在不同状态下的反射率曲线[32]

    Figure 2.  (a) Schematic diagram of structure and working principle of LTO device[32]; (b) phase transition process of LTO[32]; (c) the reflectivity curves of the LTO device in different states[32].

    图 3  (a) VO2器件结构示意图[34]; (b)器件高发射率态的红外热图[34]; (c)器件低发射率态的红外热图[34]

    Figure 3.  (a) Schematic diagram of structure of VO2 device[34]; (b) thermal image of VO2 device in high emissivity state[34]; (c) thermal image of VO2 device in low emissivity state[34].

    图 4  (a)金属网格电极器件结构[38]; (b)多孔电极器件结构[11]

    Figure 4.  (a) The structural diagram of device with metal grid electrode[38]; (b) the structural diagram of the device with porous electrode[11].

    图 5  (a)透射式噻吩器件结构及红外透过性调控效果[46]; (b)横向式噻吩器件结构及红外热图[47]

    Figure 5.  (a) The structure and regulation effect of infrared transmittance of transmission thiophene device[46]; (b) structure and infrared discoloration image of transverse discoloration thiophene device[47].

    图 6  (a)石墨烯器件结构及红外热图[56]; (b)织物石墨烯器件外观及反射率光谱[57]

    Figure 6.  (a) Structure and thermal map of graphene device[56]; (b) appearance and reflectivity curves of fabric graphene device[57].

    图 7  (a)多壁碳纳米管器件结构示意图[61]; (b)多壁碳纳米管微观结构示意图[61]; (c)柔性器件的红外伪装效果[61]; (d)不同掺杂程度器件的红外热图[61]

    Figure 7.  (a) Structure diagram of multi-walled CNT device[61]; (b) schematic diagram of microstructure of multi-walled CNT[61]; (c) infrared camouflage effect of flexible multi-walled CNT device[61]; (d) infrared thermal maps of multi-walled CNT devices in different states[61].

    图 8  (a)超表面石墨烯器件表面微元结构示意图[65]; (b)金纳米微元阵列[65]; (c)不同栅极电压下的器件反射率光谱[65]

    Figure 8.  (a) Chematic diagram of surface microelement structure of metasurface graphene device[65]; (b) gold electrode array[65]; (c) IR reflectance curves of the device for different gate voltages[65].

    图 9  (a)基于石墨烯电极的器件的结构及红外热图[70]; (b) 基于Pt电极刚性器件的工作过程及不同通电时间下的反射率曲线[71]; (c)基于Pt电极柔性器件的红外伪装效果及不同通电时间下柔性器件的反射率曲线[71]

    Figure 9.  (a) Schematic diagram of device structure and thermal maps based on graphene electrode[70]; (b) diagram of working process and the reflectivity curves of rigid device based on Pt electrode at different times of energization[71]; (c) infrared camouflage effect and reflectivity curves of flexible device at different times of energization[71].

    表 1  几类红外发射率动态调控器件的主要性能最优值[17,27,32,34,39,45,56,61,71]

    Table 1.  The optimum values of main performance of several kinds of IR emissivity adjustable devices[17,27,32,34,39,45,56,61,71].

    主要性能金属氧化物类导电聚合物类石墨烯类金属类
    调控量0.800 (7—12 μm)0.553 (8—14 μm)0.550 (7.5—13 μm)0.770 (8—14 μm)
    响应时间/s1.61.01$ \times $10–910
    循环寿命/次1000009003500400
    多波段兼容性红外可见光-红外可见光-红外-微波可见光-红外
    工艺复杂程度较复杂简单复杂简单
    制备成本较高较低较高
    DownLoad: CSV
  • [1]

    Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar

    [2]

    Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar

    [3]

    Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar

    [4]

    Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar

    [5]

    Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar

    [6]

    Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar

    [7]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [8]

    Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar

    [9]

    Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar

    [10]

    Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar

    [11]

    Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar

    [12]

    Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar

    [13]

    Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203

    [14]

    Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar

    [15]

    Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar

    [16]

    Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699

    [17]

    Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar

    [18]

    Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar

    [19]

    Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar

    [20]

    Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar

    [21]

    Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar

    [22]

    Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar

    [23]

    Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar

    [24]

    Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar

    [25]

    Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar

    [26]

    Demiryont H 2008 SPIE 10.1117

    [27]

    Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar

    [28]

    Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330

    [29]

    Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar

    [30]

    Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar

    [31]

    Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar

    [32]

    Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar

    [33]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [34]

    Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar

    [35]

    Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar

    [36]

    Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar

    [37]

    Meisel T, Braun R 1992 SPIE 200 1728Google Scholar

    [38]

    Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar

    [39]

    Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar

    [40]

    Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar

    [41]

    Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar

    [42]

    Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar

    [43]

    Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar

    [44]

    Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [45]

    Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar

    [46]

    Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar

    [47]

    Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar

    [48]

    Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar

    [49]

    Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [51]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar

    [52]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [53]

    Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [54]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [55]

    Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar

    [56]

    Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar

    [57]

    Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar

    [58]

    Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar

    [59]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [60]

    Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar

    [61]

    Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar

    [62]

    Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar

    [63]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [64]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [65]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [66]

    Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar

    [67]

    Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar

    [68]

    Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar

    [69]

    Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar

    [70]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar

    [71]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar

    [72]

    Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar

    [73]

    Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar

  • [1] Chen Wen-Bo, Chen He-Ming. Terahertz liquid crystal phase shifter based on metamaterial composite structure. Acta Physica Sinica, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [3] The research progress of Infrared Electrochromic devices. Acta Physica Sinica, 2021, (): .
    [4] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [5] Li Yong-Ming,  Wang Liang,  Chen Xiang-Lin,  Ruan Nian-Shou,  Zhao De-Shan. Regression analysis of coincidence measurements for determinating the neutron emission rate of 252Cf spontaneous fission. Acta Physica Sinica, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [6] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [7] Feng Wei, Zhang Fu-Min, Wang Wei-Jing, Qu Xing-Hua. Adaptive high-dynamic-range imaging method and its application based on digital micromirror device. Acta Physica Sinica, 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [8] Zhang Lu, Dong Yun-Song, Jing Long-Fei, Lin Zhi-Wei, Tan Xiu-Lan, Kuang Long-Yu, Li Hang, Shang Wan-Li, Zhang Wen-Hai, Li Zhi-Chao, Zhan Xia-Yu, Yuan Guang-Hui, Li Hai, Jiang Shao-En, Yang Jia-Min, Ding Yong-Kun. Experimental study on improving hohlraum wall reemission ratio by low density gold foam. Acta Physica Sinica, 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [9] Liu Jun-Yan, Qin Lei, Song Peng, Gong Jin-Long, Wang Yang, A. Mandelis. Infrared radiation dynamic response and parametric analysis for silicon solar cell using photocarrier radiometry. Acta Physica Sinica, 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [10] Yu Hai-Tao, Wang Jiang. Chaos synchronization of FitzHugh-Nagumo neurons via backstepping and adaptive dynamical sliding mode control. Acta Physica Sinica, 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [11] Jin Ming, Bai Ming, Miao Jun-Gang. Emissivity study of the array shaped blackbody in the microwave band. Acta Physica Sinica, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [12] Huang Jian-Guo, Han Jian-Wei. Analysis of a typical internal charging induced spacecraft anomaly. Acta Physica Sinica, 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [13] Tian Qi-Xiang, Liu Sheng-Chao. Fabrication and spectral reflective properties of In2O3/SnO2 film. Acta Physica Sinica, 2010, 59(1): 541-544. doi: 10.7498/aps.59.541
    [14] Luo Qun, Gao Ya, Qi Ya-Nan, Wu Tong, Xu Huan, Li Li-Xiang, Yang Yi-Xian. Model reference adaptive synchronization in integration complex dynamical networks. Acta Physica Sinica, 2009, 58(10): 6809-6817. doi: 10.7498/aps.58.6809
    [15] Zhang Min, Hu Shou-Song. Adaptive control of uncertain chaotic systems with time delays using dynamic structure neural network. Acta Physica Sinica, 2008, 57(3): 1431-1438. doi: 10.7498/aps.57.1431
    [16] Gao Yang, Li Li-Xiang, Peng Hai-Peng, Yang Yi-Xian, Zhang Xiao-Hong. Adaptive synchronization in united complex dynamical network with multi-links. Acta Physica Sinica, 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [17] Zhang Wei-Jia, Wang Tian-Min, Zhong Li-Zhi, Wu Xiao-Wen, Cui Min. Theoretical study of infrared emissivity of indium tin oxide films. Acta Physica Sinica, 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [18] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅱ)nonlinear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [19] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅰ)linear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [20] XU JI-REN, HUANG NAN-TANG, JIANG YI-FENG, FU GUANG-SHENG, WU ZHEN-QIU. THE STUDY OF VIBRATIONAL ENERGY TRANSFER DYNAMICS IN BCl3 EXCITED BY AN INTENSE INFRARED FIELD. Acta Physica Sinica, 1983, 32(7): 854-866. doi: 10.7498/aps.32.854
Metrics
  • Abstract views:  9055
  • PDF Downloads:  349
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2021
  • Accepted Date:  17 May 2021
  • Available Online:  11 October 2021
  • Published Online:  20 October 2021

/

返回文章
返回